DiffSharp.Backends.Torch 1.0.6-preview1838761310

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.6-preview1838761310
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.6-preview1838761310
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838761310" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.6-preview1838761310" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.6-preview1838761310
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.6-preview1838761310"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.6-preview1838761310
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838761310&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.6-preview1838761310&prerelease
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,093 3/26/2022
1.0.7-preview2044360861 456 3/26/2022
1.0.7-preview1873603133 499 2/21/2022
1.0.7-preview1872895008 488 2/20/2022
1.0.7-preview1872194677 477 2/20/2022
1.0.7-preview1867437105 454 2/19/2022
1.0.7-preview1838897476 496 2/14/2022
1.0.7-preview1838869913 470 2/14/2022
1.0.6 6,719 2/9/2022
1.0.6-preview1838805210 478 2/14/2022
1.0.6-preview1838790927 556 2/14/2022
1.0.6-preview1838781533 501 2/14/2022
1.0.6-preview1838761310 465 2/14/2022
1.0.6-preview1838574327 544 2/14/2022
1.0.6-preview1838238393 498 2/13/2022
1.0.6-preview1837967313 523 2/13/2022
1.0.6-preview1837932839 347 2/13/2022
1.0.6-preview1837857091 342 2/13/2022
1.0.5 3,681 2/9/2022
1.0.4 3,832 2/8/2022
1.0.3 4,937 2/8/2022
1.0.2 4,054 2/8/2022
1.0.1 4,902 11/8/2021
1.0.0-preview-987646120 653 6/30/2021
1.0.0-preview-964642900 615 6/23/2021
1.0.0-preview-964597118 477 6/23/2021
1.0.0-preview-964532207 536 6/23/2021
1.0.0-preview-964414624 543 6/23/2021
1.0.0-preview-962665709 401 6/23/2021
1.0.0-preview-961120541 445 6/22/2021
1.0.0-preview-958984202 479 6/22/2021
1.0.0-preview-783523654 622 4/25/2021
1.0.0-preview-783503343 522 4/25/2021
1.0.0-preview-783410550 550 4/25/2021
1.0.0-preview-781810429 493 4/25/2021
1.0.0-preview-775752139 581 4/22/2021
1.0.0-preview-774228953 535 4/22/2021
1.0.0-preview-769092916 548 4/21/2021
1.0.0-preview-768013090 523 4/20/2021
1.0.0-preview-762002995 495 4/19/2021
1.0.0-preview-761040762 557 4/18/2021
1.0.0-preview-761018834 585 4/18/2021
1.0.0-preview-756065403 498 4/16/2021
1.0.0-preview-755638011 497 4/16/2021
1.0.0-preview-752421465 527 4/15/2021
1.0.0-preview-748176085 514 4/14/2021
1.0.0-preview-746203897 500 4/13/2021
1.0.0-preview-746138300 533 4/13/2021
1.0.0-preview-745205599 478 4/13/2021
1.0.0-preview-739671157 509 4/12/2021
1.0.0-preview-712483117 517 4/2/2021
1.0.0-preview-699281085 458 3/29/2021
1.0.0-preview-699125312 512 3/29/2021
1.0.0-preview-698458610 559 3/29/2021
1.0.0-preview-697743517 579 3/29/2021
1.0.0-preview-697665469 516 3/29/2021
1.0.0-preview-690194555 522 3/26/2021
1.0.0-preview-688124591 488 3/25/2021
1.0.0-preview-687886352 491 3/25/2021
1.0.0-preview-681551353 529 3/24/2021
1.0.0-preview-681104545 536 3/23/2021
1.0.0-preview-680643606 564 3/23/2021
1.0.0-preview-679950457 516 3/23/2021
1.0.0-preview-669022451 522 3/19/2021
1.0.0-preview-643151273 422 3/11/2021
1.0.0-preview-633398743 499 3/8/2021
1.0.0-preview-633348953 501 3/8/2021
1.0.0-preview-621803110 565 3/4/2021
1.0.0-preview-611561611 548 3/1/2021
1.0.0-preview-611172961 468 3/1/2021
1.0.0-preview-593196134 444 2/23/2021
1.0.0-preview-589424126 497 2/22/2021
1.0.0-preview-589402583 527 2/22/2021
1.0.0-preview-586837684 471 2/21/2021
1.0.0-preview-586440747 519 2/21/2021
1.0.0-preview-498549439 543 1/20/2021
1.0.0-preview-485581354 543 1/14/2021
1.0.0-preview-392545720 623 11/30/2020
1.0.0-preview-392233243 584 11/30/2020
1.0.0-preview-392187079 625 11/30/2020
1.0.0-preview-390203270 564 11/29/2020
1.0.0-preview-387146713 645 11/27/2020
1.0.0-preview-386097798 681 11/26/2020
1.0.0-preview-385867359 683 11/26/2020
1.0.0-preview-385523380 569 11/26/2020
1.0.0-preview-384128234 665 11/25/2020
1.0.0-preview-374537774 631 11/20/2020
1.0.0-preview-374468367 558 11/20/2020
1.0.0-preview-368681212 606 11/17/2020
1.0.0-preview-368659044 681 11/17/2020
1.0.0-preview-364746088 690 11/15/2020
1.0.0-preview-364706087 647 11/15/2020
1.0.0-preview-363372268 577 11/14/2020
1.0.0-preview-362038354 597 11/13/2020
1.0.0-preview-362004577 613 11/13/2020
1.0.0-preview-361488593 550 11/13/2020
1.0.0-preview-360710530 607 11/13/2020
1.0.0-preview-359756455 612 11/12/2020
1.0.0-preview-358333968 632 11/11/2020
1.0.0-preview-358184921 644 11/11/2020
1.0.0-preview-358174946 614 11/11/2020
1.0.0-preview-349704450 706 11/6/2020
1.0.0-preview-349564717 687 11/6/2020
1.0.0-preview-343634015 691 11/3/2020
1.0.0-preview-343610434 620 11/3/2020
1.0.0-preview-328097867 898 10/26/2020
1.0.0-preview-322875134 642 10/22/2020
1.0.0-preview-315311536 588 10/19/2020
1.0.0-preview-309180753 623 10/15/2020
1.0.0-preview-309013019 679 10/15/2020
1.0.0-preview-308920132 600 10/15/2020
1.0.0-preview-308837132 634 10/15/2020
1.0.0-preview-308751690 638 10/15/2020
1.0.0-preview-308593840 643 10/15/2020
1.0.0-preview-299173506 719 10/10/2020
1.0.0-preview-292259854 716 10/6/2020
1.0.0-preview-291985511 671 10/6/2020
1.0.0-preview-291903007 621 10/6/2020
1.0.0-preview-291722399 683 10/6/2020
1.0.0-preview-284981464 633 10/2/2020
1.0.0-preview-284595614 602 10/2/2020
1.0.0-preview-280886714 683 9/30/2020
1.0.0-preview-278989673 631 9/29/2020
1.0.0-preview-277686264 612 9/29/2020
1.0.0-preview-277653295 637 9/29/2020
1.0.0-preview-275730148 693 9/28/2020
1.0.0-preview-275727262 663 9/28/2020
1.0.0-preview-267667710 693 9/22/2020
1.0.0-preview-263264614 725 9/20/2020
1.0.0-preview-263250971 757 9/20/2020
1.0.0-preview-262623253 612 9/19/2020
1.0.0-preview-258339834 641 9/16/2020
1.0.0-preview-258210544 681 9/16/2020
1.0.0-preview-258177528 725 9/16/2020
1.0.0-preview-258119380 718 9/16/2020
1.0.0-preview-256594931 677 9/16/2020
1.0.0-preview-256435175 727 9/15/2020
1.0.0-preview-253816091 630 9/14/2020
1.0.0-preview-253197654 652 9/14/2020
1.0.0-preview-247523274 604 9/10/2020
1.0.0-preview-247118168 679 9/9/2020
1.0.0-preview-246444372 735 9/9/2020
1.0.0-preview-246434361 710 9/9/2020
1.0.0-preview-246402060 585 9/9/2020
1.0.0-preview-245105781 614 9/8/2020
1.0.0-preview-244918410 668 9/8/2020
1.0.0-preview-243478925 612 9/7/2020
1.0.0-preview-243471084 628 9/7/2020
1.0.0-preview-243323135 739 9/7/2020
1.0.0-preview-1413494063 547 11/2/2021
1.0.0-preview-1405354284 503 10/31/2021
1.0.0-preview-1338129467 545 10/13/2021
1.0.0-preview-1327345305 641 10/11/2021
1.0.0-preview-1325686991 489 10/10/2021
1.0.0-preview-1324682939 645 10/10/2021
1.0.0-preview-1239345497 559 9/15/2021
1.0.0-preview-1227879651 554 9/13/2021
1.0.0-preview-1227810778 556 9/13/2021
1.0.0-preview-1222163389 538 9/10/2021
1.0.0-preview-1177844564 565 8/28/2021
1.0.0-preview-1176119659 475 8/28/2021
1.0.0-preview-1176116073 495 8/28/2021
1.0.0-preview-1176112166 457 8/28/2021
1.0.0-preview-1172193368 487 8/26/2021
1.0.0-preview-1168287221 474 8/25/2021
1.0.0-preview-1147185155 557 8/19/2021
1.0.0-preview-1133286135 596 8/15/2021
1.0.0-preview-1118120224 576 8/10/2021
1.0.0-preview-1111420036 487 8/9/2021
1.0.0-preview-1111385512 421 8/9/2021
1.0.0-preview-1111166736 487 8/9/2021
1.0.0-preview-1088380884 508 8/1/2021
1.0.0-preview-1088311063 514 8/1/2021
1.0.0-preview-1088021240 587 8/1/2021
1.0.0-preview-1083990424 537 7/31/2021
1.0.0-preview-1080710191 503 7/30/2021
1.0.0-preview-1080701269 531 7/30/2021
1.0.0-preview-1079028054 536 7/29/2021
1.0.0-preview-1079000079 531 7/29/2021
1.0.0-preview-1078977564 590 7/29/2021
1.0.0-preview-1069218438 445 7/26/2021
1.0.0-preview-1065692127 589 7/26/2021
1.0.0-preview-1054554829 491 7/22/2021
1.0.0-preview-1054460177 552 7/22/2021
1.0.0-preview-1044919966 511 7/19/2021
1.0.0-preview-1043697034 445 7/19/2021
1.0.0-preview-1001211231 537 7/5/2021
1.0.0-preview-1001204475 508 7/5/2021
0.9.5-preview-243240046 745 9/7/2020
0.9.5-preview-243219862 769 9/7/2020