DiffSharp.Backends.Torch 1.0.0-preview-1168287221

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-1168287221
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-1168287221
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1168287221" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-1168287221" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-1168287221
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-1168287221"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-1168287221
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1168287221&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-1168287221&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,094 3/26/2022
1.0.7-preview2044360861 457 3/26/2022
1.0.7-preview1873603133 501 2/21/2022
1.0.7-preview1872895008 489 2/20/2022
1.0.7-preview1872194677 478 2/20/2022
1.0.7-preview1867437105 455 2/19/2022
1.0.7-preview1838897476 497 2/14/2022
1.0.7-preview1838869913 471 2/14/2022
1.0.6 6,720 2/9/2022
1.0.6-preview1838805210 480 2/14/2022
1.0.6-preview1838790927 557 2/14/2022
1.0.6-preview1838781533 503 2/14/2022
1.0.6-preview1838761310 466 2/14/2022
1.0.6-preview1838574327 545 2/14/2022
1.0.6-preview1838238393 499 2/13/2022
1.0.6-preview1837967313 524 2/13/2022
1.0.6-preview1837932839 348 2/13/2022
1.0.6-preview1837857091 344 2/13/2022
1.0.5 3,682 2/9/2022
1.0.4 3,833 2/8/2022
1.0.3 4,938 2/8/2022
1.0.2 4,055 2/8/2022
1.0.1 4,903 11/8/2021
1.0.0-preview-987646120 654 6/30/2021
1.0.0-preview-964642900 616 6/23/2021
1.0.0-preview-964597118 478 6/23/2021
1.0.0-preview-964532207 537 6/23/2021
1.0.0-preview-964414624 545 6/23/2021
1.0.0-preview-962665709 402 6/23/2021
1.0.0-preview-961120541 446 6/22/2021
1.0.0-preview-958984202 481 6/22/2021
1.0.0-preview-783523654 623 4/25/2021
1.0.0-preview-783503343 523 4/25/2021
1.0.0-preview-783410550 551 4/25/2021
1.0.0-preview-781810429 495 4/25/2021
1.0.0-preview-775752139 583 4/22/2021
1.0.0-preview-774228953 537 4/22/2021
1.0.0-preview-769092916 550 4/21/2021
1.0.0-preview-768013090 525 4/20/2021
1.0.0-preview-762002995 499 4/19/2021
1.0.0-preview-761040762 559 4/18/2021
1.0.0-preview-761018834 587 4/18/2021
1.0.0-preview-756065403 500 4/16/2021
1.0.0-preview-755638011 499 4/16/2021
1.0.0-preview-752421465 529 4/15/2021
1.0.0-preview-748176085 516 4/14/2021
1.0.0-preview-746203897 502 4/13/2021
1.0.0-preview-746138300 536 4/13/2021
1.0.0-preview-745205599 480 4/13/2021
1.0.0-preview-739671157 511 4/12/2021
1.0.0-preview-712483117 519 4/2/2021
1.0.0-preview-699281085 460 3/29/2021
1.0.0-preview-699125312 514 3/29/2021
1.0.0-preview-698458610 561 3/29/2021
1.0.0-preview-697743517 581 3/29/2021
1.0.0-preview-697665469 518 3/29/2021
1.0.0-preview-690194555 524 3/26/2021
1.0.0-preview-688124591 490 3/25/2021
1.0.0-preview-687886352 493 3/25/2021
1.0.0-preview-681551353 531 3/24/2021
1.0.0-preview-681104545 538 3/23/2021
1.0.0-preview-680643606 566 3/23/2021
1.0.0-preview-679950457 518 3/23/2021
1.0.0-preview-669022451 524 3/19/2021
1.0.0-preview-643151273 424 3/11/2021
1.0.0-preview-633398743 501 3/8/2021
1.0.0-preview-633348953 503 3/8/2021
1.0.0-preview-621803110 567 3/4/2021
1.0.0-preview-611561611 550 3/1/2021
1.0.0-preview-611172961 471 3/1/2021
1.0.0-preview-593196134 446 2/23/2021
1.0.0-preview-589424126 499 2/22/2021
1.0.0-preview-589402583 529 2/22/2021
1.0.0-preview-586837684 474 2/21/2021
1.0.0-preview-586440747 522 2/21/2021
1.0.0-preview-498549439 544 1/20/2021
1.0.0-preview-485581354 544 1/14/2021
1.0.0-preview-392545720 624 11/30/2020
1.0.0-preview-392233243 585 11/30/2020
1.0.0-preview-392187079 627 11/30/2020
1.0.0-preview-390203270 566 11/29/2020
1.0.0-preview-387146713 646 11/27/2020
1.0.0-preview-386097798 682 11/26/2020
1.0.0-preview-385867359 684 11/26/2020
1.0.0-preview-385523380 570 11/26/2020
1.0.0-preview-384128234 666 11/25/2020
1.0.0-preview-374537774 632 11/20/2020
1.0.0-preview-374468367 559 11/20/2020
1.0.0-preview-368681212 608 11/17/2020
1.0.0-preview-368659044 682 11/17/2020
1.0.0-preview-364746088 691 11/15/2020
1.0.0-preview-364706087 648 11/15/2020
1.0.0-preview-363372268 578 11/14/2020
1.0.0-preview-362038354 598 11/13/2020
1.0.0-preview-362004577 614 11/13/2020
1.0.0-preview-361488593 551 11/13/2020
1.0.0-preview-360710530 609 11/13/2020
1.0.0-preview-359756455 613 11/12/2020
1.0.0-preview-358333968 633 11/11/2020
1.0.0-preview-358184921 645 11/11/2020
1.0.0-preview-358174946 615 11/11/2020
1.0.0-preview-349704450 708 11/6/2020
1.0.0-preview-349564717 688 11/6/2020
1.0.0-preview-343634015 692 11/3/2020
1.0.0-preview-343610434 621 11/3/2020
1.0.0-preview-328097867 899 10/26/2020
1.0.0-preview-322875134 644 10/22/2020
1.0.0-preview-315311536 589 10/19/2020
1.0.0-preview-309180753 624 10/15/2020
1.0.0-preview-309013019 681 10/15/2020
1.0.0-preview-308920132 601 10/15/2020
1.0.0-preview-308837132 635 10/15/2020
1.0.0-preview-308751690 639 10/15/2020
1.0.0-preview-308593840 644 10/15/2020
1.0.0-preview-299173506 720 10/10/2020
1.0.0-preview-292259854 718 10/6/2020
1.0.0-preview-291985511 673 10/6/2020
1.0.0-preview-291903007 622 10/6/2020
1.0.0-preview-291722399 684 10/6/2020
1.0.0-preview-284981464 634 10/2/2020
1.0.0-preview-284595614 603 10/2/2020
1.0.0-preview-280886714 684 9/30/2020
1.0.0-preview-278989673 632 9/29/2020
1.0.0-preview-277686264 613 9/29/2020
1.0.0-preview-277653295 638 9/29/2020
1.0.0-preview-275730148 695 9/28/2020
1.0.0-preview-275727262 664 9/28/2020
1.0.0-preview-267667710 694 9/22/2020
1.0.0-preview-263264614 726 9/20/2020
1.0.0-preview-263250971 758 9/20/2020
1.0.0-preview-262623253 614 9/19/2020
1.0.0-preview-258339834 642 9/16/2020
1.0.0-preview-258210544 682 9/16/2020
1.0.0-preview-258177528 726 9/16/2020
1.0.0-preview-258119380 719 9/16/2020
1.0.0-preview-256594931 680 9/16/2020
1.0.0-preview-256435175 728 9/15/2020
1.0.0-preview-253816091 631 9/14/2020
1.0.0-preview-253197654 653 9/14/2020
1.0.0-preview-247523274 605 9/10/2020
1.0.0-preview-247118168 680 9/9/2020
1.0.0-preview-246444372 736 9/9/2020
1.0.0-preview-246434361 711 9/9/2020
1.0.0-preview-246402060 586 9/9/2020
1.0.0-preview-245105781 615 9/8/2020
1.0.0-preview-244918410 669 9/8/2020
1.0.0-preview-243478925 613 9/7/2020
1.0.0-preview-243471084 629 9/7/2020
1.0.0-preview-243323135 740 9/7/2020
1.0.0-preview-1413494063 548 11/2/2021
1.0.0-preview-1405354284 504 10/31/2021
1.0.0-preview-1338129467 547 10/13/2021
1.0.0-preview-1327345305 642 10/11/2021
1.0.0-preview-1325686991 491 10/10/2021
1.0.0-preview-1324682939 647 10/10/2021
1.0.0-preview-1239345497 560 9/15/2021
1.0.0-preview-1227879651 555 9/13/2021
1.0.0-preview-1227810778 557 9/13/2021
1.0.0-preview-1222163389 540 9/10/2021
1.0.0-preview-1177844564 567 8/28/2021
1.0.0-preview-1176119659 476 8/28/2021
1.0.0-preview-1176116073 496 8/28/2021
1.0.0-preview-1176112166 458 8/28/2021
1.0.0-preview-1172193368 488 8/26/2021
1.0.0-preview-1168287221 475 8/25/2021
1.0.0-preview-1147185155 558 8/19/2021
1.0.0-preview-1133286135 597 8/15/2021
1.0.0-preview-1118120224 577 8/10/2021
1.0.0-preview-1111420036 488 8/9/2021
1.0.0-preview-1111385512 422 8/9/2021
1.0.0-preview-1111166736 488 8/9/2021
1.0.0-preview-1088380884 510 8/1/2021
1.0.0-preview-1088311063 516 8/1/2021
1.0.0-preview-1088021240 588 8/1/2021
1.0.0-preview-1083990424 538 7/31/2021
1.0.0-preview-1080710191 504 7/30/2021
1.0.0-preview-1080701269 532 7/30/2021
1.0.0-preview-1079028054 537 7/29/2021
1.0.0-preview-1079000079 533 7/29/2021
1.0.0-preview-1078977564 591 7/29/2021
1.0.0-preview-1069218438 446 7/26/2021
1.0.0-preview-1065692127 591 7/26/2021
1.0.0-preview-1054554829 492 7/22/2021
1.0.0-preview-1054460177 553 7/22/2021
1.0.0-preview-1044919966 512 7/19/2021
1.0.0-preview-1043697034 446 7/19/2021
1.0.0-preview-1001211231 539 7/5/2021
1.0.0-preview-1001204475 509 7/5/2021
0.9.5-preview-243240046 747 9/7/2020
0.9.5-preview-243219862 771 9/7/2020