DiffSharp.Backends.Torch 1.0.0-preview-688124591

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-688124591
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-688124591
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-688124591" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-688124591" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-688124591
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-688124591"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-688124591
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-688124591&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-688124591&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,504 3/26/2022
1.0.7-preview2044360861 609 3/26/2022
1.0.7-preview1873603133 666 2/21/2022
1.0.7-preview1872895008 653 2/20/2022
1.0.7-preview1872194677 659 2/20/2022
1.0.7-preview1867437105 635 2/19/2022
1.0.7-preview1838897476 636 2/14/2022
1.0.7-preview1838869913 640 2/14/2022
1.0.6 6,881 2/9/2022
1.0.6-preview1838805210 635 2/14/2022
1.0.6-preview1838790927 712 2/14/2022
1.0.6-preview1838781533 640 2/14/2022
1.0.6-preview1838761310 667 2/14/2022
1.0.6-preview1838574327 725 2/14/2022
1.0.6-preview1838238393 664 2/13/2022
1.0.6-preview1837967313 697 2/13/2022
1.0.6-preview1837932839 470 2/13/2022
1.0.6-preview1837857091 469 2/13/2022
1.0.5 3,811 2/9/2022
1.0.4 3,981 2/8/2022
1.0.3 5,071 2/8/2022
1.0.2 4,193 2/8/2022
1.0.1 5,040 11/8/2021
1.0.0-preview-987646120 805 6/30/2021
1.0.0-preview-964642900 776 6/23/2021
1.0.0-preview-964597118 600 6/23/2021
1.0.0-preview-964532207 668 6/23/2021
1.0.0-preview-964414624 675 6/23/2021
1.0.0-preview-962665709 526 6/23/2021
1.0.0-preview-961120541 571 6/22/2021
1.0.0-preview-958984202 608 6/22/2021
1.0.0-preview-783523654 753 4/25/2021
1.0.0-preview-783503343 662 4/25/2021
1.0.0-preview-783410550 694 4/25/2021
1.0.0-preview-781810429 637 4/25/2021
1.0.0-preview-775752139 726 4/22/2021
1.0.0-preview-774228953 693 4/22/2021
1.0.0-preview-769092916 675 4/21/2021
1.0.0-preview-768013090 658 4/20/2021
1.0.0-preview-762002995 643 4/19/2021
1.0.0-preview-761040762 708 4/18/2021
1.0.0-preview-761018834 715 4/18/2021
1.0.0-preview-756065403 609 4/16/2021
1.0.0-preview-755638011 641 4/16/2021
1.0.0-preview-752421465 675 4/15/2021
1.0.0-preview-748176085 670 4/14/2021
1.0.0-preview-746203897 644 4/13/2021
1.0.0-preview-746138300 669 4/13/2021
1.0.0-preview-745205599 627 4/13/2021
1.0.0-preview-739671157 655 4/12/2021
1.0.0-preview-712483117 657 4/2/2021
1.0.0-preview-699281085 605 3/29/2021
1.0.0-preview-699125312 661 3/29/2021
1.0.0-preview-698458610 708 3/29/2021
1.0.0-preview-697743517 719 3/29/2021
1.0.0-preview-697665469 656 3/29/2021
1.0.0-preview-690194555 661 3/26/2021
1.0.0-preview-688124591 643 3/25/2021
1.0.0-preview-687886352 638 3/25/2021
1.0.0-preview-681551353 660 3/24/2021
1.0.0-preview-681104545 693 3/23/2021
1.0.0-preview-680643606 729 3/23/2021
1.0.0-preview-679950457 655 3/23/2021
1.0.0-preview-669022451 668 3/19/2021
1.0.0-preview-643151273 564 3/11/2021
1.0.0-preview-633398743 632 3/8/2021
1.0.0-preview-633348953 665 3/8/2021
1.0.0-preview-621803110 703 3/4/2021
1.0.0-preview-611561611 698 3/1/2021
1.0.0-preview-611172961 608 3/1/2021
1.0.0-preview-593196134 578 2/23/2021
1.0.0-preview-589424126 625 2/22/2021
1.0.0-preview-589402583 656 2/22/2021
1.0.0-preview-586837684 610 2/21/2021
1.0.0-preview-586440747 663 2/21/2021
1.0.0-preview-498549439 662 1/20/2021
1.0.0-preview-485581354 702 1/14/2021
1.0.0-preview-392545720 767 11/30/2020
1.0.0-preview-392233243 715 11/30/2020
1.0.0-preview-392187079 785 11/30/2020
1.0.0-preview-390203270 709 11/29/2020
1.0.0-preview-387146713 803 11/27/2020
1.0.0-preview-386097798 838 11/26/2020
1.0.0-preview-385867359 841 11/26/2020
1.0.0-preview-385523380 720 11/26/2020
1.0.0-preview-384128234 832 11/25/2020
1.0.0-preview-374537774 789 11/20/2020
1.0.0-preview-374468367 683 11/20/2020
1.0.0-preview-368681212 750 11/17/2020
1.0.0-preview-368659044 838 11/17/2020
1.0.0-preview-364746088 871 11/15/2020
1.0.0-preview-364706087 805 11/15/2020
1.0.0-preview-363372268 722 11/14/2020
1.0.0-preview-362038354 767 11/13/2020
1.0.0-preview-362004577 756 11/13/2020
1.0.0-preview-361488593 707 11/13/2020
1.0.0-preview-360710530 753 11/13/2020
1.0.0-preview-359756455 741 11/12/2020
1.0.0-preview-358333968 797 11/11/2020
1.0.0-preview-358184921 799 11/11/2020
1.0.0-preview-358174946 766 11/11/2020
1.0.0-preview-349704450 857 11/6/2020
1.0.0-preview-349564717 838 11/6/2020
1.0.0-preview-343634015 854 11/3/2020
1.0.0-preview-343610434 760 11/3/2020
1.0.0-preview-328097867 1,060 10/26/2020
1.0.0-preview-322875134 800 10/22/2020
1.0.0-preview-315311536 744 10/19/2020
1.0.0-preview-309180753 784 10/15/2020
1.0.0-preview-309013019 824 10/15/2020
1.0.0-preview-308920132 730 10/15/2020
1.0.0-preview-308837132 794 10/15/2020
1.0.0-preview-308751690 760 10/15/2020
1.0.0-preview-308593840 774 10/15/2020
1.0.0-preview-299173506 859 10/10/2020
1.0.0-preview-292259854 865 10/6/2020
1.0.0-preview-291985511 811 10/6/2020
1.0.0-preview-291903007 785 10/6/2020
1.0.0-preview-291722399 813 10/6/2020
1.0.0-preview-284981464 759 10/2/2020
1.0.0-preview-284595614 745 10/2/2020
1.0.0-preview-280886714 819 9/30/2020
1.0.0-preview-278989673 760 9/29/2020
1.0.0-preview-277686264 758 9/29/2020
1.0.0-preview-277653295 767 9/29/2020
1.0.0-preview-275730148 829 9/28/2020
1.0.0-preview-275727262 802 9/28/2020
1.0.0-preview-267667710 850 9/22/2020
1.0.0-preview-263264614 857 9/20/2020
1.0.0-preview-263250971 876 9/20/2020
1.0.0-preview-262623253 748 9/19/2020
1.0.0-preview-258339834 789 9/16/2020
1.0.0-preview-258210544 817 9/16/2020
1.0.0-preview-258177528 859 9/16/2020
1.0.0-preview-258119380 860 9/16/2020
1.0.0-preview-256594931 811 9/16/2020
1.0.0-preview-256435175 884 9/15/2020
1.0.0-preview-253816091 782 9/14/2020
1.0.0-preview-253197654 805 9/14/2020
1.0.0-preview-247523274 746 9/10/2020
1.0.0-preview-247118168 830 9/9/2020
1.0.0-preview-246444372 874 9/9/2020
1.0.0-preview-246434361 832 9/9/2020
1.0.0-preview-246402060 754 9/9/2020
1.0.0-preview-245105781 766 9/8/2020
1.0.0-preview-244918410 836 9/8/2020
1.0.0-preview-243478925 753 9/7/2020
1.0.0-preview-243471084 796 9/7/2020
1.0.0-preview-243323135 895 9/7/2020
1.0.0-preview-1413494063 693 11/2/2021
1.0.0-preview-1405354284 631 10/31/2021
1.0.0-preview-1338129467 684 10/13/2021
1.0.0-preview-1327345305 776 10/11/2021
1.0.0-preview-1325686991 620 10/10/2021
1.0.0-preview-1324682939 766 10/10/2021
1.0.0-preview-1239345497 700 9/15/2021
1.0.0-preview-1227879651 676 9/13/2021
1.0.0-preview-1227810778 679 9/13/2021
1.0.0-preview-1222163389 671 9/10/2021
1.0.0-preview-1177844564 716 8/28/2021
1.0.0-preview-1176119659 623 8/28/2021
1.0.0-preview-1176116073 629 8/28/2021
1.0.0-preview-1176112166 598 8/28/2021
1.0.0-preview-1172193368 620 8/26/2021
1.0.0-preview-1168287221 607 8/25/2021
1.0.0-preview-1147185155 696 8/19/2021
1.0.0-preview-1133286135 738 8/15/2021
1.0.0-preview-1118120224 708 8/10/2021
1.0.0-preview-1111420036 621 8/9/2021
1.0.0-preview-1111385512 557 8/9/2021
1.0.0-preview-1111166736 614 8/9/2021
1.0.0-preview-1088380884 646 8/1/2021
1.0.0-preview-1088311063 653 8/1/2021
1.0.0-preview-1088021240 726 8/1/2021
1.0.0-preview-1083990424 668 7/31/2021
1.0.0-preview-1080710191 651 7/30/2021
1.0.0-preview-1080701269 674 7/30/2021
1.0.0-preview-1079028054 677 7/29/2021
1.0.0-preview-1079000079 678 7/29/2021
1.0.0-preview-1078977564 751 7/29/2021
1.0.0-preview-1069218438 590 7/26/2021
1.0.0-preview-1065692127 714 7/26/2021
1.0.0-preview-1054554829 628 7/22/2021
1.0.0-preview-1054460177 684 7/22/2021
1.0.0-preview-1044919966 673 7/19/2021
1.0.0-preview-1043697034 570 7/19/2021
1.0.0-preview-1001211231 668 7/5/2021
1.0.0-preview-1001204475 662 7/5/2021
0.9.5-preview-243240046 882 9/7/2020
0.9.5-preview-243219862 938 9/7/2020