DiffSharp.Backends.Torch 1.0.0-preview-699281085

This is a prerelease version of DiffSharp.Backends.Torch.
There is a newer version of this package available.
See the version list below for details.
dotnet add package DiffSharp.Backends.Torch --version 1.0.0-preview-699281085
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.0-preview-699281085
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-699281085" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.0-preview-699281085" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.0-preview-699281085
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.0-preview-699281085"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.0-preview-699281085
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-699281085&prerelease
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.0-preview-699281085&prerelease
                    
Install as a Cake Tool

Package Description

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (5)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,091 3/26/2022
1.0.7-preview2044360861 456 3/26/2022
1.0.7-preview1873603133 499 2/21/2022
1.0.7-preview1872895008 488 2/20/2022
1.0.7-preview1872194677 477 2/20/2022
1.0.7-preview1867437105 454 2/19/2022
1.0.7-preview1838897476 496 2/14/2022
1.0.7-preview1838869913 470 2/14/2022
1.0.6 6,719 2/9/2022
1.0.6-preview1838805210 478 2/14/2022
1.0.6-preview1838790927 556 2/14/2022
1.0.6-preview1838781533 501 2/14/2022
1.0.6-preview1838761310 465 2/14/2022
1.0.6-preview1838574327 544 2/14/2022
1.0.6-preview1838238393 498 2/13/2022
1.0.6-preview1837967313 523 2/13/2022
1.0.6-preview1837932839 346 2/13/2022
1.0.6-preview1837857091 342 2/13/2022
1.0.5 3,681 2/9/2022
1.0.4 3,832 2/8/2022
1.0.3 4,937 2/8/2022
1.0.2 4,054 2/8/2022
1.0.1 4,901 11/8/2021
1.0.0-preview-987646120 652 6/30/2021
1.0.0-preview-964642900 614 6/23/2021
1.0.0-preview-964597118 475 6/23/2021
1.0.0-preview-964532207 535 6/23/2021
1.0.0-preview-964414624 542 6/23/2021
1.0.0-preview-962665709 400 6/23/2021
1.0.0-preview-961120541 444 6/22/2021
1.0.0-preview-958984202 478 6/22/2021
1.0.0-preview-783523654 621 4/25/2021
1.0.0-preview-783503343 520 4/25/2021
1.0.0-preview-783410550 549 4/25/2021
1.0.0-preview-781810429 492 4/25/2021
1.0.0-preview-775752139 580 4/22/2021
1.0.0-preview-774228953 534 4/22/2021
1.0.0-preview-769092916 547 4/21/2021
1.0.0-preview-768013090 522 4/20/2021
1.0.0-preview-762002995 494 4/19/2021
1.0.0-preview-761040762 556 4/18/2021
1.0.0-preview-761018834 584 4/18/2021
1.0.0-preview-756065403 497 4/16/2021
1.0.0-preview-755638011 496 4/16/2021
1.0.0-preview-752421465 525 4/15/2021
1.0.0-preview-748176085 513 4/14/2021
1.0.0-preview-746203897 499 4/13/2021
1.0.0-preview-746138300 532 4/13/2021
1.0.0-preview-745205599 477 4/13/2021
1.0.0-preview-739671157 509 4/12/2021
1.0.0-preview-712483117 517 4/2/2021
1.0.0-preview-699281085 458 3/29/2021
1.0.0-preview-699125312 512 3/29/2021
1.0.0-preview-698458610 559 3/29/2021
1.0.0-preview-697743517 579 3/29/2021
1.0.0-preview-697665469 516 3/29/2021
1.0.0-preview-690194555 522 3/26/2021
1.0.0-preview-688124591 487 3/25/2021
1.0.0-preview-687886352 491 3/25/2021
1.0.0-preview-681551353 529 3/24/2021
1.0.0-preview-681104545 536 3/23/2021
1.0.0-preview-680643606 563 3/23/2021
1.0.0-preview-679950457 516 3/23/2021
1.0.0-preview-669022451 521 3/19/2021
1.0.0-preview-643151273 422 3/11/2021
1.0.0-preview-633398743 499 3/8/2021
1.0.0-preview-633348953 501 3/8/2021
1.0.0-preview-621803110 565 3/4/2021
1.0.0-preview-611561611 548 3/1/2021
1.0.0-preview-611172961 468 3/1/2021
1.0.0-preview-593196134 444 2/23/2021
1.0.0-preview-589424126 497 2/22/2021
1.0.0-preview-589402583 527 2/22/2021
1.0.0-preview-586837684 471 2/21/2021
1.0.0-preview-586440747 519 2/21/2021
1.0.0-preview-498549439 541 1/20/2021
1.0.0-preview-485581354 542 1/14/2021
1.0.0-preview-392545720 621 11/30/2020
1.0.0-preview-392233243 583 11/30/2020
1.0.0-preview-392187079 624 11/30/2020
1.0.0-preview-390203270 563 11/29/2020
1.0.0-preview-387146713 644 11/27/2020
1.0.0-preview-386097798 680 11/26/2020
1.0.0-preview-385867359 682 11/26/2020
1.0.0-preview-385523380 568 11/26/2020
1.0.0-preview-384128234 664 11/25/2020
1.0.0-preview-374537774 630 11/20/2020
1.0.0-preview-374468367 557 11/20/2020
1.0.0-preview-368681212 605 11/17/2020
1.0.0-preview-368659044 680 11/17/2020
1.0.0-preview-364746088 689 11/15/2020
1.0.0-preview-364706087 646 11/15/2020
1.0.0-preview-363372268 576 11/14/2020
1.0.0-preview-362038354 596 11/13/2020
1.0.0-preview-362004577 612 11/13/2020
1.0.0-preview-361488593 549 11/13/2020
1.0.0-preview-360710530 606 11/13/2020
1.0.0-preview-359756455 611 11/12/2020
1.0.0-preview-358333968 630 11/11/2020
1.0.0-preview-358184921 643 11/11/2020
1.0.0-preview-358174946 613 11/11/2020
1.0.0-preview-349704450 705 11/6/2020
1.0.0-preview-349564717 686 11/6/2020
1.0.0-preview-343634015 689 11/3/2020
1.0.0-preview-343610434 619 11/3/2020
1.0.0-preview-328097867 897 10/26/2020
1.0.0-preview-322875134 641 10/22/2020
1.0.0-preview-315311536 587 10/19/2020
1.0.0-preview-309180753 621 10/15/2020
1.0.0-preview-309013019 678 10/15/2020
1.0.0-preview-308920132 598 10/15/2020
1.0.0-preview-308837132 633 10/15/2020
1.0.0-preview-308751690 637 10/15/2020
1.0.0-preview-308593840 641 10/15/2020
1.0.0-preview-299173506 718 10/10/2020
1.0.0-preview-292259854 715 10/6/2020
1.0.0-preview-291985511 670 10/6/2020
1.0.0-preview-291903007 620 10/6/2020
1.0.0-preview-291722399 682 10/6/2020
1.0.0-preview-284981464 632 10/2/2020
1.0.0-preview-284595614 601 10/2/2020
1.0.0-preview-280886714 682 9/30/2020
1.0.0-preview-278989673 630 9/29/2020
1.0.0-preview-277686264 610 9/29/2020
1.0.0-preview-277653295 636 9/29/2020
1.0.0-preview-275730148 692 9/28/2020
1.0.0-preview-275727262 662 9/28/2020
1.0.0-preview-267667710 692 9/22/2020
1.0.0-preview-263264614 724 9/20/2020
1.0.0-preview-263250971 756 9/20/2020
1.0.0-preview-262623253 610 9/19/2020
1.0.0-preview-258339834 640 9/16/2020
1.0.0-preview-258210544 680 9/16/2020
1.0.0-preview-258177528 724 9/16/2020
1.0.0-preview-258119380 715 9/16/2020
1.0.0-preview-256594931 676 9/16/2020
1.0.0-preview-256435175 725 9/15/2020
1.0.0-preview-253816091 629 9/14/2020
1.0.0-preview-253197654 650 9/14/2020
1.0.0-preview-247523274 602 9/10/2020
1.0.0-preview-247118168 678 9/9/2020
1.0.0-preview-246444372 733 9/9/2020
1.0.0-preview-246434361 709 9/9/2020
1.0.0-preview-246402060 584 9/9/2020
1.0.0-preview-245105781 613 9/8/2020
1.0.0-preview-244918410 667 9/8/2020
1.0.0-preview-243478925 611 9/7/2020
1.0.0-preview-243471084 627 9/7/2020
1.0.0-preview-243323135 738 9/7/2020
1.0.0-preview-1413494063 546 11/2/2021
1.0.0-preview-1405354284 502 10/31/2021
1.0.0-preview-1338129467 544 10/13/2021
1.0.0-preview-1327345305 640 10/11/2021
1.0.0-preview-1325686991 488 10/10/2021
1.0.0-preview-1324682939 643 10/10/2021
1.0.0-preview-1239345497 558 9/15/2021
1.0.0-preview-1227879651 553 9/13/2021
1.0.0-preview-1227810778 554 9/13/2021
1.0.0-preview-1222163389 537 9/10/2021
1.0.0-preview-1177844564 564 8/28/2021
1.0.0-preview-1176119659 474 8/28/2021
1.0.0-preview-1176116073 494 8/28/2021
1.0.0-preview-1176112166 456 8/28/2021
1.0.0-preview-1172193368 486 8/26/2021
1.0.0-preview-1168287221 472 8/25/2021
1.0.0-preview-1147185155 556 8/19/2021
1.0.0-preview-1133286135 595 8/15/2021
1.0.0-preview-1118120224 575 8/10/2021
1.0.0-preview-1111420036 486 8/9/2021
1.0.0-preview-1111385512 420 8/9/2021
1.0.0-preview-1111166736 486 8/9/2021
1.0.0-preview-1088380884 507 8/1/2021
1.0.0-preview-1088311063 513 8/1/2021
1.0.0-preview-1088021240 586 8/1/2021
1.0.0-preview-1083990424 535 7/31/2021
1.0.0-preview-1080710191 502 7/30/2021
1.0.0-preview-1080701269 529 7/30/2021
1.0.0-preview-1079028054 534 7/29/2021
1.0.0-preview-1079000079 529 7/29/2021
1.0.0-preview-1078977564 589 7/29/2021
1.0.0-preview-1069218438 444 7/26/2021
1.0.0-preview-1065692127 588 7/26/2021
1.0.0-preview-1054554829 490 7/22/2021
1.0.0-preview-1054460177 551 7/22/2021
1.0.0-preview-1044919966 510 7/19/2021
1.0.0-preview-1043697034 444 7/19/2021
1.0.0-preview-1001211231 536 7/5/2021
1.0.0-preview-1001204475 507 7/5/2021
0.9.5-preview-243240046 744 9/7/2020
0.9.5-preview-243219862 768 9/7/2020