nanoFramework.Iot.Device.Bno055 1.2.217

Prefix Reserved
There is a newer version of this package available.
See the version list below for details.
dotnet add package nanoFramework.Iot.Device.Bno055 --version 1.2.217                
NuGet\Install-Package nanoFramework.Iot.Device.Bno055 -Version 1.2.217                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="nanoFramework.Iot.Device.Bno055" Version="1.2.217" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add nanoFramework.Iot.Device.Bno055 --version 1.2.217                
#r "nuget: nanoFramework.Iot.Device.Bno055, 1.2.217"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install nanoFramework.Iot.Device.Bno055 as a Cake Addin
#addin nuget:?package=nanoFramework.Iot.Device.Bno055&version=1.2.217

// Install nanoFramework.Iot.Device.Bno055 as a Cake Tool
#tool nuget:?package=nanoFramework.Iot.Device.Bno055&version=1.2.217                

BNO055 - inertial measurement unit

Those sensors are intelligent 9-axis absolute orientation sensors. Most of the implementations are using I2C sensors but the sensor supports as well HID over I2C and serial port communication. This class only supports I2C.

All operations for a current usage has been developed. The individual interruption level settings for each sensor has not been implemented. If needed, they are quite straight forward to implement.

Documentation

BNO055

BNO055 datasheet

You will find this device as "Inertial Measurement Unit" or "Adafruit BNO055 Absolute Orientation Sensor"

Usage

Important: make sure you properly setup the I2C pins especially for ESP32 before creating the I2cDevice, make sure you install the nanoFramework.Hardware.ESP32 nuget:

//////////////////////////////////////////////////////////////////////
// when connecting to an ESP32 device, need to configure the I2C GPIOs
// used for the bus
Configuration.SetPinFunction(21, DeviceFunction.I2C1_DATA);
Configuration.SetPinFunction(22, DeviceFunction.I2C1_CLOCK);

For other devices like STM32, please make sure you're using the preset pins for the I2C bus you want to use.

Create a Bno055Sensor class and pass the I2C device. The default I2C address is provided in the class.

I2cDevice i2cDevice = I2cDevice.Create(new I2cConnectionSettings(1, Bno055Sensor.DefaultI2cAddress));
Bno055Sensor bno055Sensor = new Bno055Sensor(i2cDevice);
Debug.WriteLine($"Id: {bno055Sensor.Info.ChipId}, AccId: {bno055Sensor.Info.AcceleratorId}, GyroId: {bno055Sensor.Info.GyroscopeId}, MagId: {bno055Sensor.Info.MagnetometerId}");
Debug.WriteLine($"Firmware version: {bno055Sensor.Info.FirmwareVersion}, Bootloader: {bno055Sensor.Info.BootloaderVersion}");
Debug.WriteLine($"Temperature source: {bno055Sensor.TemperatureSource}, Operation mode: {bno055Sensor.OperationMode}, Units: {bno055Sensor.Units}");
Debug.WriteLine($"Powermode: {bno055Sensor.PowerMode}");

You can easily access the sensor information and settings thru the properties.

Calibration

To get accurate measurement, it is better to wait for the Magnetometer to calibrate. As in your phone, when the calibration is needed, it is necessary to move the sensor in the air to help for the calibration.

The following code shows how to check the calibration:

Debug.WriteLine("Checking the magnetometer calibration, move the sensor up to the calibration will be complete if needed");
var calibrationStatus = bno055Sensor.GetCalibrationStatus();
while ((calibrationStatus & CalibrationStatus.MagnetometerSuccess) != (CalibrationStatus.MagnetometerSuccess))
{
    Debug.Write($".");
    calibrationStatus = bno055Sensor.GetCalibrationStatus();
    Thread.Sleep(200);
}

Debug.WriteLine();
Debug.WriteLine("Calibration completed");

Please note that it is not really necessary to check the calibration of the other sensors and the system. The qualibraiton is done all the time. The important one is the Magnetometer.

Accessing sensor data

Simply access the various sensor data thru their properties. Note that it is better to read at once the data and then display them, or manipulate them rather than accessing the sub element every time. The reason is because in the first case, you'll do 1 measurement and the data will be consistent, in the second case, you'll do 1 measurement every time you access 1 sub property which means, the data will be inconsistent.

Wrong way:

// Data will be inconsistent in this case!
// Do not access the data like this
Debug.WriteLine($"Magnetometer X: {bno055Sensor.Magnetometer.X} Y: {bno055Sensor.Magnetometer.Y} Z: {bno055Sensor.Magnetometer.Z}");

Good way:

// First read and store the data
var magneto = bno055Sensor.Magnetometer;
// Then manipulate the data
Debug.WriteLine($"Magnetometer X: {magneto.X} Y: {magneto.Y} Z: {magneto.Z}");

The sensor offers 9-axis measurement. Here is an example showing all the sensor properties you can access:

while(true)
{
    var magneto = bno055Sensor.Magnetometer;
    Debug.WriteLine($"Magnetometer X: {magneto.X} Y: {magneto.Y} Z: {magneto.Z}");
    var gyro = bno055Sensor.Gyroscope;
    Debug.WriteLine($"Gyroscope X: {gyro.X} Y: {gyro.Y} Z: {gyro.Z}");
    var accele = bno055Sensor.Accelerometer;
    Debug.WriteLine($"Acceleration X: {accele.X} Y: {accele.Y} Z: {accele.Z}");
    var orien = bno055Sensor.Orientation;
    Debug.WriteLine($"Orientation Heading: {orien.X} Roll: {orien.Y} Pitch: {orien.Z}");
    var line = bno055Sensor.LinearAcceleration;
    Debug.WriteLine($"Linear acceleration X: {line.X} Y: {line.Y} Z: {line.Z}");
    var gravity = bno055Sensor.Gravity;
    Debug.WriteLine($"Gravity X: {gravity.X} Y: {gravity.Y} Z: {gravity.Z}");
    var qua = bno055Sensor.Quaternion;
    Debug.WriteLine($"Quaternion X: {qua.X} Y: {qua.Y} Z: {qua.Z} W: {qua.W}");
    var temp = bno055Sensor.Temperature.Celsius;
    Debug.WriteLine($"Temperature: {temp} °C");
    Thread.Sleep(100);
}

Information regarding sensors and units

  • Orientation:

    • Absolute Orientation (Euler Vector, 100Hz)

    • Three axis orientation data based on a 360° sphere

    • Heading = Vector3.X; Roll = Vector3.Y; Pitch = Vector3.Z

    • Units availabel are Degrees (default) or Radians, you can change with

      bno055Sensor.Units = bno055Sensor.Units | Units.EulerAnglesRadians;
      
  • Quaternion

    • Absolute Orientation (Quaterion, 100Hz)
    • Four point quaternion output for more accurate data manipulation
    • Unit is 1 Quaternion = 2^14 returned data
  • Magnetometer

    • Magnetic Field Strength Vector (20Hz)
    • Three axis of magnetic field sensing in micro Tesla (uT)
  • Acceleration

    • Acceleration Vector (100Hz)
    • Three axis of acceleration (gravity + linear motion)
    • Default unit in m/s^2, can be changed for mg
  • LinearAcceleration

    • Linear Acceleration Vector (100Hz)
    • Three axis of linear acceleration data (acceleration minus gravity)
    • Default unit in m/s^2, can be changed for mg
  • Gravity

    • Gravity Vector (100Hz)
    • Three axis of gravitational acceleration (minus any movement)
    • Default unit in m/s^2, can be changed for mg
  • Gyroscope

    • Angular Velocity Vector (100Hz)
    • Three axis of 'rotation speed'
    • Default unit is Degree per second but can be changed to Radian per second
  • Temperature

    • Temperature (1Hz)

    • Ambient temperature in degrees celsius

    • Default can be changed for Farenheit

    • Temperature can be measured thru the Gyroscope or the Accelerometer

    • Precision seems better with the Gyroscope, so it is set by default. You can change the source like this:

      bno055Sensor.TemperatureSource = TemperatureSource.Accelerometer;
      

Sensor data calibration

You can get and set the sensor data qualibration. Every sensor which permit the operation has a function to get the calibration data and set the calibration data.

This is an example of how to get and set the calibration data for the Accelerometer.

Vector4 calib = bno055Sensor.GetAccelerometerCalibrationData();
// Change, transform the calibration data
bno055Sensor.SetAccelerometerCalibrationData(calib);

Remapping the accelerometer axis

It is possible to remap the acceleroter axis as well as get their configuration.

For example, you can change the X axis for a negative signe likle this:

var axisMap = bno055Sensor.GetAxisMap();
axisMap[0].Sign = AxisSign.Negative;
bno055Sensor.SetAxisMap(axisMap[0], axisMap[1], axisMap[2]);

In the returned array, X is the first element, Y the second and Z the last one.

Product Compatible and additional computed target framework versions.
.NET Framework net is compatible. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.2.639 77 9/6/2024
1.2.631 69 8/28/2024
1.2.613 86 8/9/2024
1.2.601 54 7/26/2024
1.2.590 78 7/17/2024
1.2.573 89 6/19/2024
1.2.570 84 6/14/2024
1.2.560 86 5/29/2024
1.2.548 95 5/15/2024
1.2.536 96 4/15/2024
1.2.514 106 3/22/2024
1.2.494 95 2/28/2024
1.2.474 112 1/24/2024
1.2.462 141 1/5/2024
1.2.458 129 12/20/2023
1.2.436 145 11/10/2023
1.2.416 92 11/8/2023
1.2.403 131 10/6/2023
1.2.396 103 9/27/2023
1.2.384 150 9/6/2023
1.2.378 142 8/16/2023
1.2.369 152 8/2/2023
1.2.363 132 7/28/2023
1.2.357 140 7/19/2023
1.2.354 128 7/14/2023
1.2.345 156 6/21/2023
1.2.341 144 6/14/2023
1.2.337 145 6/7/2023
1.2.335 146 6/2/2023
1.2.329 132 5/26/2023
1.2.313 137 5/12/2023
1.2.302 159 5/10/2023
1.2.297 145 5/3/2023
1.2.273 225 3/17/2023
1.2.267 238 3/10/2023
1.2.263 239 3/8/2023
1.2.259 218 2/27/2023
1.2.256 250 2/24/2023
1.2.253 236 2/22/2023
1.2.222 302 1/9/2023
1.2.217 328 1/6/2023
1.2.212 312 1/5/2023
1.2.208 299 1/3/2023
1.2.203 306 12/28/2022
1.2.159 385 11/14/2022
1.2.153 371 11/5/2022
1.2.141 393 10/25/2022
1.2.128 402 10/22/2022
1.2.122 449 10/12/2022
1.2.114 394 10/8/2022
1.2.95 444 9/22/2022
1.2.87 513 9/15/2022
1.2.73 409 9/8/2022
1.2.63 414 9/3/2022
1.2.47 434 8/15/2022
1.2.40 435 8/6/2022
1.2.38 437 8/5/2022
1.2.32 437 8/2/2022
1.2.28 454 8/1/2022
1.2.13 454 7/24/2022
1.2.10 431 7/23/2022
1.1.145.58726 461 7/7/2022
1.1.133.52556 452 6/30/2022
1.1.121.35854 470 6/26/2022
1.1.116.8772 446 6/24/2022
1.1.113.2032 448 6/23/2022
1.1.102.51394 418 6/15/2022
1.1.99.36719 441 6/14/2022
1.1.97.17326 442 6/13/2022
1.1.92.53000 436 6/8/2022
1.1.72.29765 427 5/31/2022
1.1.64.21380 450 5/26/2022
1.1.58.10097 458 5/23/2022
1.1.54.28879 457 5/23/2022
1.1.40 467 5/5/2022
1.1.3 480 4/15/2022
1.1.1 457 4/14/2022
1.0.300 470 3/31/2022
1.0.288-preview.114 120 3/25/2022
1.0.288-preview.113 117 3/25/2022
1.0.288-preview.106 111 3/23/2022
1.0.288-preview.104 106 3/22/2022
1.0.288-preview.103 106 3/21/2022
1.0.288-preview.100 116 3/19/2022
1.0.288-preview.99 123 3/18/2022
1.0.288-preview.98 114 3/18/2022
1.0.288-preview.95 125 3/15/2022
1.0.288-preview.93 112 3/15/2022
1.0.288-preview.87 113 3/10/2022
1.0.288-preview.86 116 3/8/2022
1.0.288-preview.77 118 2/27/2022
1.0.288-preview.75 107 2/26/2022
1.0.288-preview.65 110 2/18/2022
1.0.288-preview.63 112 2/16/2022
1.0.288-preview.61 118 2/12/2022
1.0.288-preview.58 108 2/10/2022
1.0.288-preview.53 111 2/9/2022
1.0.288-preview.48 128 2/4/2022
1.0.288-preview.41 123 1/31/2022
1.0.288-preview.29 123 1/28/2022
1.0.288-preview.20 127 1/27/2022
1.0.288-preview.19 117 1/27/2022
1.0.288-preview.18 126 1/27/2022
1.0.288-preview.5 122 1/24/2022
1.0.288-preview.3 119 1/21/2022
1.0.288-preview.1 117 1/21/2022
1.0.272 154 1/10/2022
1.0.259 332 12/9/2021
1.0.258 336 12/7/2021
1.0.218 189 10/18/2021
1.0.157 349 9/4/2021
1.0.155 333 8/31/2021
1.0.153 344 8/14/2021
1.0.151 343 8/6/2021
1.0.146 339 7/22/2021
1.0.130 149 7/6/2021
1.0.127 173 7/5/2021
1.0.125 188 7/5/2021
1.0.12 186 5/21/2021