MathNet.Numerics.FSharp.Signed 3.14.0-beta03

Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.

This is a prerelease version of MathNet.Numerics.FSharp.Signed.
There is a newer version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp.Signed -Version 3.14.0-beta03
dotnet add package MathNet.Numerics.FSharp.Signed --version 3.14.0-beta03
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="3.14.0-beta03" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp.Signed --version 3.14.0-beta03
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: MathNet.Numerics.FSharp.Signed, 3.14.0-beta03"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install MathNet.Numerics.FSharp.Signed as a Cake Addin
#addin nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.14.0-beta03&prerelease

// Install MathNet.Numerics.FSharp.Signed as a Cake Tool
#tool nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.14.0-beta03&prerelease
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Linear Algebra: pointwise trigonometric and basic functions ~Albert Pang
Linear Algebra: better support for F# built-in operators (sqrt, sin, exp, ..) ~Albert Pang
Linear Algebra: pointwise power operator (F#)
Generate: linear integer ranges

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version History

Version Downloads Last updated
4.15.0 138 1/7/2021
4.14.0 179 1/1/2021
4.13.0 70 12/30/2020
4.12.0 264 8/2/2020
4.11.0 245 5/24/2020
4.10.0 219 5/24/2020
4.9.1 241 4/12/2020
4.9.0 277 10/13/2019
4.8.1 302 6/11/2019
4.8.0 301 6/2/2019
4.8.0-beta02 273 5/30/2019
4.8.0-beta01 270 4/28/2019
4.7.0 497 11/11/2018
4.6.0 422 10/19/2018
4.5.0 574 5/22/2018
4.4.1 549 5/6/2018
3.20.2 605 1/22/2018
3.20.1 562 1/13/2018
3.20.0 694 7/15/2017
3.20.0-beta01 514 5/31/2017
3.19.0 604 4/29/2017
3.18.0 571 4/9/2017
3.17.0 637 1/15/2017
3.16.0 578 1/3/2017
3.15.0 589 12/27/2016
3.14.0-beta03 568 11/20/2016
3.14.0-beta02 539 11/15/2016
3.14.0-beta01 547 10/30/2016
3.13.1 639 9/6/2016
3.13.0 587 8/18/2016
3.12.0 633 7/3/2016
3.11.1 719 4/24/2016
3.11.0 782 2/13/2016
3.10.0 734 12/30/2015
3.9.0 691 11/25/2015
3.8.0 691 9/26/2015
3.7.1 692 9/21/2015
3.7.0 857 5/9/2015
3.6.0 900 3/22/2015
3.5.0 831 1/10/2015
3.4.0 660 1/4/2015
3.3.0 694 11/26/2014
3.3.0-beta2 725 10/25/2014
3.3.0-beta1 655 9/28/2014
3.2.3 868 9/6/2014
3.2.2 686 9/5/2014
3.2.1 725 8/5/2014
3.2.0 711 8/5/2014
3.1.0 723 7/20/2014
3.0.2 705 6/26/2014
3.0.1 686 6/24/2014
3.0.0 665 6/21/2014
3.0.0-beta05 616 6/20/2014
3.0.0-beta04 639 6/15/2014
3.0.0-beta03 652 6/5/2014
3.0.0-beta02 662 5/29/2014
3.0.0-beta01 690 4/14/2014
3.0.0-alpha9 646 3/29/2014
3.0.0-alpha8 631 2/26/2014
3.0.0-alpha7 622 12/30/2013
3.0.0-alpha6 630 12/2/2013
3.0.0-alpha5 710 10/2/2013
Show less