MathNet.Numerics.FSharp.Signed
3.14.0-beta02
Prefix Reserved
See the version list below for details.
dotnet add package MathNet.Numerics.FSharp.Signed --version 3.14.0-beta02
NuGet\Install-Package MathNet.Numerics.FSharp.Signed -Version 3.14.0-beta02
<PackageReference Include="MathNet.Numerics.FSharp.Signed" Version="3.14.0-beta02" />
paket add MathNet.Numerics.FSharp.Signed --version 3.14.0-beta02
#r "nuget: MathNet.Numerics.FSharp.Signed, 3.14.0-beta02"
// Install MathNet.Numerics.FSharp.Signed as a Cake Addin #addin nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.14.0-beta02&prerelease // Install MathNet.Numerics.FSharp.Signed as a Cake Tool #tool nuget:?package=MathNet.Numerics.FSharp.Signed&version=3.14.0-beta02&prerelease
Math.NET Numerics is the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET Framework | net40 is compatible. net403 was computed. net45 was computed. net451 was computed. net452 was computed. net46 was computed. net461 was computed. net462 was computed. net463 was computed. net47 was computed. net471 was computed. net472 was computed. net48 was computed. net481 was computed. |
-
- FSharp.Core (>= 3.1.2.5)
- MathNet.Numerics.Signed (= 3.14.0-beta02)
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
5.0.0 | 1,663 | 4/3/2022 |
5.0.0-beta02 | 191 | 4/3/2022 |
5.0.0-beta01 | 178 | 3/6/2022 |
5.0.0-alpha16 | 187 | 2/27/2022 |
5.0.0-alpha15 | 195 | 2/27/2022 |
5.0.0-alpha14 | 194 | 2/27/2022 |
5.0.0-alpha11 | 196 | 2/27/2022 |
5.0.0-alpha10 | 181 | 2/19/2022 |
5.0.0-alpha09 | 185 | 2/13/2022 |
5.0.0-alpha08 | 199 | 12/23/2021 |
5.0.0-alpha07 | 182 | 12/19/2021 |
5.0.0-alpha06 | 207 | 12/19/2021 |
5.0.0-alpha05 | 194 | 12/19/2021 |
5.0.0-alpha04 | 210 | 12/19/2021 |
5.0.0-alpha03 | 195 | 12/5/2021 |
5.0.0-alpha02 | 246 | 7/11/2021 |
5.0.0-alpha01 | 331 | 6/27/2021 |
4.15.0 | 741 | 1/7/2021 |
4.14.0 | 589 | 1/1/2021 |
4.13.0 | 449 | 12/30/2020 |
4.12.0 | 674 | 8/2/2020 |
4.11.0 | 798 | 5/24/2020 |
4.10.0 | 624 | 5/24/2020 |
4.9.1 | 627 | 4/12/2020 |
4.9.0 | 650 | 10/13/2019 |
4.8.1 | 723 | 6/11/2019 |
4.8.0 | 703 | 6/2/2019 |
4.8.0-beta02 | 505 | 5/30/2019 |
4.8.0-beta01 | 525 | 4/28/2019 |
4.7.0 | 962 | 11/11/2018 |
4.6.0 | 892 | 10/19/2018 |
4.5.0 | 1,112 | 5/22/2018 |
4.4.1 | 1,085 | 5/6/2018 |
3.20.2 | 8,358 | 1/22/2018 |
3.20.1 | 1,092 | 1/13/2018 |
3.20.0 | 1,196 | 7/15/2017 |
3.20.0-beta01 | 820 | 5/31/2017 |
3.19.0 | 1,095 | 4/29/2017 |
3.18.0 | 1,075 | 4/9/2017 |
3.17.0 | 1,132 | 1/15/2017 |
3.16.0 | 1,067 | 1/3/2017 |
3.15.0 | 1,092 | 12/27/2016 |
3.14.0-beta03 | 879 | 11/20/2016 |
3.14.0-beta02 | 856 | 11/15/2016 |
3.14.0-beta01 | 846 | 10/30/2016 |
3.13.1 | 1,133 | 9/6/2016 |
3.13.0 | 1,058 | 8/18/2016 |
3.12.0 | 1,158 | 7/3/2016 |
3.11.1 | 1,418 | 4/24/2016 |
3.11.0 | 1,355 | 2/13/2016 |
3.10.0 | 1,248 | 12/30/2015 |
3.9.0 | 1,318 | 11/25/2015 |
3.8.0 | 1,260 | 9/26/2015 |
3.7.1 | 1,261 | 9/21/2015 |
3.7.0 | 1,391 | 5/9/2015 |
3.6.0 | 1,451 | 3/22/2015 |
3.5.0 | 1,368 | 1/10/2015 |
3.4.0 | 1,210 | 1/4/2015 |
3.3.0 | 1,355 | 11/26/2014 |
3.3.0-beta2 | 1,101 | 10/25/2014 |
3.3.0-beta1 | 1,003 | 9/28/2014 |
3.2.3 | 1,418 | 9/6/2014 |
3.2.2 | 1,233 | 9/5/2014 |
3.2.1 | 1,268 | 8/5/2014 |
3.2.0 | 1,227 | 8/5/2014 |
3.1.0 | 1,256 | 7/20/2014 |
3.0.2 | 1,263 | 6/26/2014 |
3.0.1 | 1,248 | 6/24/2014 |
3.0.0 | 1,228 | 6/21/2014 |
3.0.0-beta05 | 987 | 6/20/2014 |
3.0.0-beta04 | 1,009 | 6/15/2014 |
3.0.0-beta03 | 1,027 | 6/5/2014 |
3.0.0-beta02 | 1,007 | 5/29/2014 |
3.0.0-beta01 | 1,204 | 4/14/2014 |
3.0.0-alpha9 | 1,089 | 3/29/2014 |
3.0.0-alpha8 | 1,070 | 2/26/2014 |
3.0.0-alpha7 | 980 | 12/30/2013 |
3.0.0-alpha6 | 1,040 | 12/2/2013 |
3.0.0-alpha5 | 1,124 | 10/2/2013 |
Linear Algebra: enable experimental matrix product implementation
Linear Algebra: better support for matrix to/from row-major arrays and enumerables
Linear Algebra: transport allows specifying a result matrix to transpose into, inplace if square
Linear Algebra: vector and matrix AsArray and similar to access internal arrays if applicable
Linear Algebra: vector and matrix pointwise min/max and absmin/absmax