TYoshimura.MultiPrecision
6.3.3
See the version list below for details.
dotnet add package TYoshimura.MultiPrecision --version 6.3.3
NuGet\Install-Package TYoshimura.MultiPrecision -Version 6.3.3
<PackageReference Include="TYoshimura.MultiPrecision" Version="6.3.3" />
paket add TYoshimura.MultiPrecision --version 6.3.3
#r "nuget: TYoshimura.MultiPrecision, 6.3.3"
// Install TYoshimura.MultiPrecision as a Cake Addin #addin nuget:?package=TYoshimura.MultiPrecision&version=6.3.3 // Install TYoshimura.MultiPrecision as a Cake Tool #tool nuget:?package=TYoshimura.MultiPrecision&version=6.3.3
MultiPrecision
MultiPrecision Arithmetic Implements
Requirement
.NET 8.0
AVX2 suppoted CPU. (Intel:Haswell(2013)-, AMD:Excavator(2015)-)
Install
More Functions ?
Spec
Exponent : ±2147483647
Mantissa : 128-32768 bits
Round: half away from zero
MaxValue: ±8.808065x10^646456992
Types
type | mantissa bits | significant digits | note |
---|---|---|---|
MultiPrecision<Pow2.N4> | 128 | 34 | Fastest |
MultiPrecision<Pow2.N8> | 256 | 73 | Fast |
MultiPrecision<Pow2.N16> | 512 | 150 | Standard |
MultiPrecision<Pow2.N32> | 1024 | 304 | |
MultiPrecision<Pow2.N64> | 2048 | 612 | Slow |
MultiPrecision<Pow2.N128> | 4096 | 1229 | |
MultiPrecision<Pow2.N256> | 8192 | 2462 | Very slow |
MultiPrecision<Pow2.N512> | 16384 | 4928 | |
MultiPrecision<Pow2.N1024> | 32768 | 9860 | Not recommended |
MultiPrecision<N> | Length x 32 | Length x 9.6 - 4 | public struct N : IConstant { public int Value => Length; } |
Functions
function | domain | mantissa error bits | note |
---|---|---|---|
MultiPrecision<N>.Sqrt(x) | [0,+inf) | 1 | |
MultiPrecision<N>.Cbrt(x) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Log2(x) | (0,+inf) | 0 | |
MultiPrecision<N>.Log(x) | (0,+inf) | 1 | |
MultiPrecision<N>.Log10(x) | (0,+inf) | 1 | |
MultiPrecision<N>.Log1p(x) | (-1,+inf) | 1 | log(1+x) |
MultiPrecision<N>.Pow2(x) | (-inf,+inf) | 0 | |
MultiPrecision<N>.Pow(x, y) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Pow10(x) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Exp(x) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Expm1(x) | (-inf,+inf) | 1 | exp(x)-1 |
MultiPrecision<N>.Sin(x) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Cos(x) | (-inf,+inf) | 1 | |
MultiPrecision<N>.Tan(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.SinPI(x) | (-inf,+inf) | 0 | sin(πx) |
MultiPrecision<N>.CosPI(x) | (-inf,+inf) | 0 | cos(πx) |
MultiPrecision<N>.TanPI(x) | (-inf,+inf) | 1 | tan(πx) |
MultiPrecision<N>.Sinh(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Cosh(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Tanh(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Asin(x) | [-1,1] | 2 | Accuracy deteriorates near x=-1,1. |
MultiPrecision<N>.Acos(x) | [-1,1] | 2 | Accuracy deteriorates near x=-1,1. |
MultiPrecision<N>.Atan(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Atan2(y, x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Arsinh(x) | (-inf,+inf) | 2 | |
MultiPrecision<N>.Arcosh(x) | [1,+inf) | 2 | |
MultiPrecision<N>.Artanh(x) | (-1,1) | 4 | Accuracy deteriorates near x=-1,1. |
MultiPrecision<N>.Erf(x) | (-1,1) | 2 | Length ≤ 256 |
MultiPrecision<N>.Erfc(x) | (0,2) | 2 | Length ≤ 256 |
MultiPrecision<N>.InverseErf(x) | (-1,1) | 2 | Length ≤ 256 |
MultiPrecision<N>.InverseErfc(x) | (0,2) | 4 | Length ≤ 256 |
MultiPrecision<N>.LogGamma(x) | (0,+inf) | 2 | Accuracy deteriorates near x=0. Length ≤ 256 |
MultiPrecision<N>.Gamma(x) | (-inf,+inf) | 2 | Accuracy deteriorates near non-positive intergers. Length ≤ 256 |
MultiPrecision<N>.Digamma(x) | (-inf,+inf) | 2 | Accuracy deteriorates near non-positive intergers and zero points. Length ≤ 256 |
MultiPrecision<N>.BesselJ(nu, z) | (-inf,+inf) | 2 | Accuracy deteriorates near zero points. (error ≤ 2^-(mantissa bits + 64)) Length ≤ 65 abs(nu) ≤ 64 |
MultiPrecision<N>.BesselY(nu, z) | (-inf,+inf) | 2 | Accuracy deteriorates near zero points. (error ≤ 2^-(mantissa bits + 64)) Length ≤ 65 abs(nu) ≤ 64 |
MultiPrecision<N>.BesselI(nu, z) | [0,+inf) | 2 | Length ≤ 65 abs(nu) ≤ 64 |
MultiPrecision<N>.BesselK(nu, z) | [0,+inf) | 2 | Length ≤ 65 abs(nu) ≤ 64 |
MultiPrecision<N>.EllipticK(m) | [0,1] | 1 | k: elliptic modulus, m=k^2 |
MultiPrecision<N>.EllipticE(m) | [0,1] | 1 | k: elliptic modulus, m=k^2 |
MultiPrecision<N>.EllipticPi(n, m) | [0,1] | 1 | k: elliptic modulus, m=k^2 |
MultiPrecision<N>.Ldexp(x, y) | (-inf,+inf) | N/A | |
MultiPrecision<N>.Random(random) | N/A | N/A | generation uniform random [0, 1) |
MultiPrecision<N>.Min(x, y) | N/A | N/A | |
MultiPrecision<N>.Max(x, y) | N/A | N/A | |
MultiPrecision<N>.Floor(x) | N/A | N/A | |
MultiPrecision<N>.Ceiling(x) | N/A | N/A | |
MultiPrecision<N>.Round(x) | N/A | N/A | |
MultiPrecision<N>.Truncate(x) | N/A | N/A | |
IEnumerable<MultiPrecision<N>>.Sum() | N/A | N/A | kahan summation |
IEnumerable<MultiPrecision<N>>.Average() | N/A | N/A | kahan summation |
IEnumerable<MultiPrecision<N>>.Variance() | N/A | N/A | population variance |
IEnumerable<MultiPrecision<N>>.Min() | N/A | N/A | |
IEnumerable<MultiPrecision<N>>.Max() | N/A | N/A |
Constants
constant | value | note |
---|---|---|
MultiPrecision<N>.PI | 3.141592653589793238462... | Pi |
MultiPrecision<N>.E | 2.718281828459045235360... | Napier's E |
MultiPrecision<N>.Sqrt2 | 1.414213562373095048801... | Sqrt(2) |
MultiPrecision<N>.Lg2 | 0.301029995663981195213... | log10(2) lg:=log10 (ISO 80000-2-12.6) |
MultiPrecision<N>.Lb10 | 3.321928094887362347870... | log2(10) lb:=log2 (ISO 80000-2-12.7) |
MultiPrecision<N>.Ln2 | 0.693147180559945309417... | log(2) ln:=log (ISO 80000-2-12.5) |
MultiPrecision<N>.LbE | 1.442695040888963407359... | log2(e) |
MultiPrecision<N>.EulerGamma | 0.577215664901532860606... | Euler's Gamma |
MultiPrecision<N>.Zeta3 | 1.202056903159594285399... | ζ(3), Apery const. |
MultiPrecision<N>.Zeta5 | 1.036927755143369926331... | ζ(5) |
MultiPrecision<N>.Zeta7 | 1.008349277381922826839... | ζ(7) |
Sequence
sequence | note |
---|---|
MultiPrecision<N>.TaylorSequence | Taylor, 1/n! |
MultiPrecision<N>.BernoulliSequence | Bernoulli, B(2k) |
MultiPrecision<N>.StirlingSequence | Stirling, Gamma convergent series, Bayes(1763) |
MultiPrecision<N>.HarmonicNumber | HarmonicNumber, H_n |
Coefficient
coefficient | note |
---|---|
MultiPrecision<N>.ChebyshevCoef | Chebyshev, C(n, m) |
Casts
- long (accurately)
MultiPrecision<N> v0 = 123;
long n0 = (long)v0;
- double (accurately)
MultiPrecision<N> v1 = 0.5;
double n1 = (double)v1;
- decimal (approximately)
MultiPrecision<N> v1 = 0.1m;
decimal n1 = (decimal)v1;
- string (approximately)
MultiPrecision<N> v2 = "3.14e0";
string s0 = v2.ToString();
string s1 = v2.ToString("E8");
string s2 = $"{v2:E8}";
I/O
BinaryWriter, BinaryReader
Licence
Author
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
-
net8.0
- No dependencies.
NuGet packages (9)
Showing the top 5 NuGet packages that depend on TYoshimura.MultiPrecision:
Package | Downloads |
---|---|
TYoshimura.MultiPrecision.Algebra
MultiPrecision Algebra |
|
TYoshimura.MultiPrecision.CurveFitting
MultiPrecision Curve Fitting - linear, polynomial, pade, arbitrary function |
|
TYoshimura.MultiPrecision.Integrate
MultiPrecision Numerical Integration Implements |
|
TYoshimura.MultiPrecision.Complex
MultiPrecision Complex and Quaternion Implements |
|
TYoshimura.MultiPrecision.ComplexAlgebra
MultiPrecision Complex Algebra |
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
6.5.0 | 129 | 11/13/2024 |
6.4.1 | 100 | 11/7/2024 |
6.4.0 | 165 | 11/1/2024 |
6.3.4 | 404 | 8/22/2024 |
6.3.3 | 117 | 6/10/2024 |
6.3.2 | 483 | 2/21/2024 |
6.3.1 | 240 | 2/8/2024 |
6.3.0 | 516 | 1/20/2024 |
6.2.1 | 488 | 9/9/2023 |
6.2.0 | 564 | 9/6/2023 |
6.1.1 | 590 | 4/6/2023 |
6.1.0 | 1,076 | 3/10/2023 |
6.0.0 | 596 | 3/3/2023 |
5.1.0 | 2,788 | 9/17/2022 |
5.0.7 | 639 | 1/6/2022 |
5.0.6 | 587 | 1/5/2022 |
5.0.5 | 1,417 | 12/1/2021 |
5.0.4 | 2,433 | 11/26/2021 |
5.0.3 | 606 | 11/22/2021 |
5.0.2 | 660 | 11/10/2021 |
fix: sinpi, cospi IEEE754