DiffSharp.Backends.Torch 1.0.7

dotnet add package DiffSharp.Backends.Torch --version 1.0.7
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.7
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.7" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.7" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.7
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.7"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.7
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.7
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.7
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (6)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,576 3/26/2022
1.0.7-preview2044360861 628 3/26/2022
1.0.7-preview1873603133 690 2/21/2022
1.0.7-preview1872895008 675 2/20/2022
1.0.7-preview1872194677 678 2/20/2022
1.0.7-preview1867437105 655 2/19/2022
1.0.7-preview1838897476 660 2/14/2022
1.0.7-preview1838869913 659 2/14/2022
1.0.6 6,905 2/9/2022
1.0.6-preview1838805210 660 2/14/2022
1.0.6-preview1838790927 732 2/14/2022
1.0.6-preview1838781533 666 2/14/2022
1.0.6-preview1838761310 686 2/14/2022
1.0.6-preview1838574327 750 2/14/2022
1.0.6-preview1838238393 694 2/13/2022
1.0.6-preview1837967313 724 2/13/2022
1.0.6-preview1837932839 493 2/13/2022
1.0.6-preview1837857091 489 2/13/2022
1.0.5 3,836 2/9/2022
1.0.4 4,002 2/8/2022
1.0.3 5,094 2/8/2022
1.0.2 4,211 2/8/2022
1.0.1 5,069 11/8/2021
1.0.0-preview-987646120 825 6/30/2021
1.0.0-preview-964642900 796 6/23/2021
1.0.0-preview-964597118 614 6/23/2021
1.0.0-preview-964532207 693 6/23/2021
1.0.0-preview-964414624 692 6/23/2021
1.0.0-preview-962665709 548 6/23/2021
1.0.0-preview-961120541 590 6/22/2021
1.0.0-preview-958984202 628 6/22/2021
1.0.0-preview-783523654 773 4/25/2021
1.0.0-preview-783503343 687 4/25/2021
1.0.0-preview-783410550 716 4/25/2021
1.0.0-preview-781810429 661 4/25/2021
1.0.0-preview-775752139 746 4/22/2021
1.0.0-preview-774228953 716 4/22/2021
1.0.0-preview-769092916 696 4/21/2021
1.0.0-preview-768013090 672 4/20/2021
1.0.0-preview-762002995 667 4/19/2021
1.0.0-preview-761040762 727 4/18/2021
1.0.0-preview-761018834 736 4/18/2021
1.0.0-preview-756065403 631 4/16/2021
1.0.0-preview-755638011 663 4/16/2021
1.0.0-preview-752421465 698 4/15/2021
1.0.0-preview-748176085 691 4/14/2021
1.0.0-preview-746203897 665 4/13/2021
1.0.0-preview-746138300 692 4/13/2021
1.0.0-preview-745205599 645 4/13/2021
1.0.0-preview-739671157 676 4/12/2021
1.0.0-preview-712483117 681 4/2/2021
1.0.0-preview-699281085 627 3/29/2021
1.0.0-preview-699125312 682 3/29/2021
1.0.0-preview-698458610 727 3/29/2021
1.0.0-preview-697743517 741 3/29/2021
1.0.0-preview-697665469 675 3/29/2021
1.0.0-preview-690194555 679 3/26/2021
1.0.0-preview-688124591 664 3/25/2021
1.0.0-preview-687886352 658 3/25/2021
1.0.0-preview-681551353 677 3/24/2021
1.0.0-preview-681104545 714 3/23/2021
1.0.0-preview-680643606 750 3/23/2021
1.0.0-preview-679950457 683 3/23/2021
1.0.0-preview-669022451 689 3/19/2021
1.0.0-preview-643151273 584 3/11/2021
1.0.0-preview-633398743 653 3/8/2021
1.0.0-preview-633348953 687 3/8/2021
1.0.0-preview-621803110 727 3/4/2021
1.0.0-preview-611561611 713 3/1/2021
1.0.0-preview-611172961 634 3/1/2021
1.0.0-preview-593196134 599 2/23/2021
1.0.0-preview-589424126 647 2/22/2021
1.0.0-preview-589402583 674 2/22/2021
1.0.0-preview-586837684 630 2/21/2021
1.0.0-preview-586440747 684 2/21/2021
1.0.0-preview-498549439 684 1/20/2021
1.0.0-preview-485581354 727 1/14/2021
1.0.0-preview-392545720 793 11/30/2020
1.0.0-preview-392233243 736 11/30/2020
1.0.0-preview-392187079 806 11/30/2020
1.0.0-preview-390203270 732 11/29/2020
1.0.0-preview-387146713 831 11/27/2020
1.0.0-preview-386097798 867 11/26/2020
1.0.0-preview-385867359 868 11/26/2020
1.0.0-preview-385523380 745 11/26/2020
1.0.0-preview-384128234 861 11/25/2020
1.0.0-preview-374537774 815 11/20/2020
1.0.0-preview-374468367 709 11/20/2020
1.0.0-preview-368681212 776 11/17/2020
1.0.0-preview-368659044 868 11/17/2020
1.0.0-preview-364746088 895 11/15/2020
1.0.0-preview-364706087 829 11/15/2020
1.0.0-preview-363372268 747 11/14/2020
1.0.0-preview-362038354 796 11/13/2020
1.0.0-preview-362004577 783 11/13/2020
1.0.0-preview-361488593 733 11/13/2020
1.0.0-preview-360710530 772 11/13/2020
1.0.0-preview-359756455 766 11/12/2020
1.0.0-preview-358333968 824 11/11/2020
1.0.0-preview-358184921 823 11/11/2020
1.0.0-preview-358174946 791 11/11/2020
1.0.0-preview-349704450 881 11/6/2020
1.0.0-preview-349564717 861 11/6/2020
1.0.0-preview-343634015 878 11/3/2020
1.0.0-preview-343610434 782 11/3/2020
1.0.0-preview-328097867 1,087 10/26/2020
1.0.0-preview-322875134 831 10/22/2020
1.0.0-preview-315311536 770 10/19/2020
1.0.0-preview-309180753 811 10/15/2020
1.0.0-preview-309013019 850 10/15/2020
1.0.0-preview-308920132 758 10/15/2020
1.0.0-preview-308837132 830 10/15/2020
1.0.0-preview-308751690 784 10/15/2020
1.0.0-preview-308593840 801 10/15/2020
1.0.0-preview-299173506 883 10/10/2020
1.0.0-preview-292259854 887 10/6/2020
1.0.0-preview-291985511 837 10/6/2020
1.0.0-preview-291903007 810 10/6/2020
1.0.0-preview-291722399 836 10/6/2020
1.0.0-preview-284981464 783 10/2/2020
1.0.0-preview-284595614 773 10/2/2020
1.0.0-preview-280886714 841 9/30/2020
1.0.0-preview-278989673 786 9/29/2020
1.0.0-preview-277686264 783 9/29/2020
1.0.0-preview-277653295 795 9/29/2020
1.0.0-preview-275730148 856 9/28/2020
1.0.0-preview-275727262 824 9/28/2020
1.0.0-preview-267667710 877 9/22/2020
1.0.0-preview-263264614 882 9/20/2020
1.0.0-preview-263250971 904 9/20/2020
1.0.0-preview-262623253 769 9/19/2020
1.0.0-preview-258339834 818 9/16/2020
1.0.0-preview-258210544 840 9/16/2020
1.0.0-preview-258177528 887 9/16/2020
1.0.0-preview-258119380 883 9/16/2020
1.0.0-preview-256594931 842 9/16/2020
1.0.0-preview-256435175 906 9/15/2020
1.0.0-preview-253816091 807 9/14/2020
1.0.0-preview-253197654 825 9/14/2020
1.0.0-preview-247523274 768 9/10/2020
1.0.0-preview-247118168 856 9/9/2020
1.0.0-preview-246444372 902 9/9/2020
1.0.0-preview-246434361 857 9/9/2020
1.0.0-preview-246402060 776 9/9/2020
1.0.0-preview-245105781 789 9/8/2020
1.0.0-preview-244918410 858 9/8/2020
1.0.0-preview-243478925 776 9/7/2020
1.0.0-preview-243471084 831 9/7/2020
1.0.0-preview-243323135 921 9/7/2020
1.0.0-preview-1413494063 718 11/2/2021
1.0.0-preview-1405354284 659 10/31/2021
1.0.0-preview-1338129467 703 10/13/2021
1.0.0-preview-1327345305 798 10/11/2021
1.0.0-preview-1325686991 641 10/10/2021
1.0.0-preview-1324682939 796 10/10/2021
1.0.0-preview-1239345497 720 9/15/2021
1.0.0-preview-1227879651 696 9/13/2021
1.0.0-preview-1227810778 707 9/13/2021
1.0.0-preview-1222163389 699 9/10/2021
1.0.0-preview-1177844564 742 8/28/2021
1.0.0-preview-1176119659 650 8/28/2021
1.0.0-preview-1176116073 650 8/28/2021
1.0.0-preview-1176112166 621 8/28/2021
1.0.0-preview-1172193368 642 8/26/2021
1.0.0-preview-1168287221 629 8/25/2021
1.0.0-preview-1147185155 718 8/19/2021
1.0.0-preview-1133286135 763 8/15/2021
1.0.0-preview-1118120224 726 8/10/2021
1.0.0-preview-1111420036 642 8/9/2021
1.0.0-preview-1111385512 579 8/9/2021
1.0.0-preview-1111166736 641 8/9/2021
1.0.0-preview-1088380884 667 8/1/2021
1.0.0-preview-1088311063 671 8/1/2021
1.0.0-preview-1088021240 750 8/1/2021
1.0.0-preview-1083990424 690 7/31/2021
1.0.0-preview-1080710191 672 7/30/2021
1.0.0-preview-1080701269 696 7/30/2021
1.0.0-preview-1079028054 696 7/29/2021
1.0.0-preview-1079000079 698 7/29/2021
1.0.0-preview-1078977564 772 7/29/2021
1.0.0-preview-1069218438 608 7/26/2021
1.0.0-preview-1065692127 737 7/26/2021
1.0.0-preview-1054554829 653 7/22/2021
1.0.0-preview-1054460177 704 7/22/2021
1.0.0-preview-1044919966 700 7/19/2021
1.0.0-preview-1043697034 593 7/19/2021
1.0.0-preview-1001211231 687 7/5/2021
1.0.0-preview-1001204475 684 7/5/2021
0.9.5-preview-243240046 904 9/7/2020
0.9.5-preview-243219862 966 9/7/2020