DiffSharp.Backends.Torch 1.0.7

dotnet add package DiffSharp.Backends.Torch --version 1.0.7
                    
NuGet\Install-Package DiffSharp.Backends.Torch -Version 1.0.7
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="DiffSharp.Backends.Torch" Version="1.0.7" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="DiffSharp.Backends.Torch" Version="1.0.7" />
                    
Directory.Packages.props
<PackageReference Include="DiffSharp.Backends.Torch" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add DiffSharp.Backends.Torch --version 1.0.7
                    
#r "nuget: DiffSharp.Backends.Torch, 1.0.7"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package DiffSharp.Backends.Torch@1.0.7
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=DiffSharp.Backends.Torch&version=1.0.7
                    
Install as a Cake Addin
#tool nuget:?package=DiffSharp.Backends.Torch&version=1.0.7
                    
Install as a Cake Tool

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (6)

Showing the top 5 NuGet packages that depend on DiffSharp.Backends.Torch:

Package Downloads
DiffSharp-cuda-windows

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cuda-linux

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-cpu

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

DiffSharp-lite

DiffSharp is a tensor library with support for differentiable programming. It is designed for use in machine learning, probabilistic programming, optimization and other domains. For documentation and installation instructions visit: https://diffsharp.github.io/

FAkka.Mathnet.Symbolic.withTensorSupported

Package Description

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
1.0.7 6,595 3/26/2022
1.0.7-preview2044360861 633 3/26/2022
1.0.7-preview1873603133 695 2/21/2022
1.0.7-preview1872895008 679 2/20/2022
1.0.7-preview1872194677 682 2/20/2022
1.0.7-preview1867437105 659 2/19/2022
1.0.7-preview1838897476 662 2/14/2022
1.0.7-preview1838869913 667 2/14/2022
1.0.6 6,909 2/9/2022
1.0.6-preview1838805210 665 2/14/2022
1.0.6-preview1838790927 735 2/14/2022
1.0.6-preview1838781533 670 2/14/2022
1.0.6-preview1838761310 689 2/14/2022
1.0.6-preview1838574327 759 2/14/2022
1.0.6-preview1838238393 700 2/13/2022
1.0.6-preview1837967313 727 2/13/2022
1.0.6-preview1837932839 499 2/13/2022
1.0.6-preview1837857091 493 2/13/2022
1.0.5 3,842 2/9/2022
1.0.4 4,005 2/8/2022
1.0.3 5,100 2/8/2022
1.0.2 4,216 2/8/2022
1.0.1 5,072 11/8/2021
1.0.0-preview-987646120 829 6/30/2021
1.0.0-preview-964642900 801 6/23/2021
1.0.0-preview-964597118 617 6/23/2021
1.0.0-preview-964532207 698 6/23/2021
1.0.0-preview-964414624 694 6/23/2021
1.0.0-preview-962665709 553 6/23/2021
1.0.0-preview-961120541 593 6/22/2021
1.0.0-preview-958984202 629 6/22/2021
1.0.0-preview-783523654 777 4/25/2021
1.0.0-preview-783503343 692 4/25/2021
1.0.0-preview-783410550 721 4/25/2021
1.0.0-preview-781810429 663 4/25/2021
1.0.0-preview-775752139 752 4/22/2021
1.0.0-preview-774228953 722 4/22/2021
1.0.0-preview-769092916 699 4/21/2021
1.0.0-preview-768013090 676 4/20/2021
1.0.0-preview-762002995 672 4/19/2021
1.0.0-preview-761040762 733 4/18/2021
1.0.0-preview-761018834 740 4/18/2021
1.0.0-preview-756065403 635 4/16/2021
1.0.0-preview-755638011 670 4/16/2021
1.0.0-preview-752421465 704 4/15/2021
1.0.0-preview-748176085 696 4/14/2021
1.0.0-preview-746203897 674 4/13/2021
1.0.0-preview-746138300 701 4/13/2021
1.0.0-preview-745205599 650 4/13/2021
1.0.0-preview-739671157 681 4/12/2021
1.0.0-preview-712483117 686 4/2/2021
1.0.0-preview-699281085 635 3/29/2021
1.0.0-preview-699125312 687 3/29/2021
1.0.0-preview-698458610 735 3/29/2021
1.0.0-preview-697743517 745 3/29/2021
1.0.0-preview-697665469 684 3/29/2021
1.0.0-preview-690194555 685 3/26/2021
1.0.0-preview-688124591 670 3/25/2021
1.0.0-preview-687886352 664 3/25/2021
1.0.0-preview-681551353 681 3/24/2021
1.0.0-preview-681104545 720 3/23/2021
1.0.0-preview-680643606 754 3/23/2021
1.0.0-preview-679950457 688 3/23/2021
1.0.0-preview-669022451 693 3/19/2021
1.0.0-preview-643151273 591 3/11/2021
1.0.0-preview-633398743 656 3/8/2021
1.0.0-preview-633348953 698 3/8/2021
1.0.0-preview-621803110 729 3/4/2021
1.0.0-preview-611561611 720 3/1/2021
1.0.0-preview-611172961 640 3/1/2021
1.0.0-preview-593196134 604 2/23/2021
1.0.0-preview-589424126 651 2/22/2021
1.0.0-preview-589402583 680 2/22/2021
1.0.0-preview-586837684 635 2/21/2021
1.0.0-preview-586440747 690 2/21/2021
1.0.0-preview-498549439 687 1/20/2021
1.0.0-preview-485581354 731 1/14/2021
1.0.0-preview-392545720 795 11/30/2020
1.0.0-preview-392233243 741 11/30/2020
1.0.0-preview-392187079 811 11/30/2020
1.0.0-preview-390203270 736 11/29/2020
1.0.0-preview-387146713 837 11/27/2020
1.0.0-preview-386097798 872 11/26/2020
1.0.0-preview-385867359 874 11/26/2020
1.0.0-preview-385523380 750 11/26/2020
1.0.0-preview-384128234 867 11/25/2020
1.0.0-preview-374537774 819 11/20/2020
1.0.0-preview-374468367 714 11/20/2020
1.0.0-preview-368681212 780 11/17/2020
1.0.0-preview-368659044 874 11/17/2020
1.0.0-preview-364746088 901 11/15/2020
1.0.0-preview-364706087 835 11/15/2020
1.0.0-preview-363372268 753 11/14/2020
1.0.0-preview-362038354 801 11/13/2020
1.0.0-preview-362004577 788 11/13/2020
1.0.0-preview-361488593 736 11/13/2020
1.0.0-preview-360710530 778 11/13/2020
1.0.0-preview-359756455 772 11/12/2020
1.0.0-preview-358333968 832 11/11/2020
1.0.0-preview-358184921 830 11/11/2020
1.0.0-preview-358174946 795 11/11/2020
1.0.0-preview-349704450 888 11/6/2020
1.0.0-preview-349564717 864 11/6/2020
1.0.0-preview-343634015 883 11/3/2020
1.0.0-preview-343610434 786 11/3/2020
1.0.0-preview-328097867 1,091 10/26/2020
1.0.0-preview-322875134 836 10/22/2020
1.0.0-preview-315311536 772 10/19/2020
1.0.0-preview-309180753 819 10/15/2020
1.0.0-preview-309013019 854 10/15/2020
1.0.0-preview-308920132 764 10/15/2020
1.0.0-preview-308837132 838 10/15/2020
1.0.0-preview-308751690 791 10/15/2020
1.0.0-preview-308593840 806 10/15/2020
1.0.0-preview-299173506 892 10/10/2020
1.0.0-preview-292259854 894 10/6/2020
1.0.0-preview-291985511 848 10/6/2020
1.0.0-preview-291903007 814 10/6/2020
1.0.0-preview-291722399 842 10/6/2020
1.0.0-preview-284981464 792 10/2/2020
1.0.0-preview-284595614 776 10/2/2020
1.0.0-preview-280886714 847 9/30/2020
1.0.0-preview-278989673 788 9/29/2020
1.0.0-preview-277686264 790 9/29/2020
1.0.0-preview-277653295 799 9/29/2020
1.0.0-preview-275730148 862 9/28/2020
1.0.0-preview-275727262 828 9/28/2020
1.0.0-preview-267667710 882 9/22/2020
1.0.0-preview-263264614 887 9/20/2020
1.0.0-preview-263250971 908 9/20/2020
1.0.0-preview-262623253 772 9/19/2020
1.0.0-preview-258339834 820 9/16/2020
1.0.0-preview-258210544 842 9/16/2020
1.0.0-preview-258177528 891 9/16/2020
1.0.0-preview-258119380 890 9/16/2020
1.0.0-preview-256594931 847 9/16/2020
1.0.0-preview-256435175 908 9/15/2020
1.0.0-preview-253816091 810 9/14/2020
1.0.0-preview-253197654 831 9/14/2020
1.0.0-preview-247523274 772 9/10/2020
1.0.0-preview-247118168 860 9/9/2020
1.0.0-preview-246444372 906 9/9/2020
1.0.0-preview-246434361 861 9/9/2020
1.0.0-preview-246402060 782 9/9/2020
1.0.0-preview-245105781 793 9/8/2020
1.0.0-preview-244918410 862 9/8/2020
1.0.0-preview-243478925 782 9/7/2020
1.0.0-preview-243471084 836 9/7/2020
1.0.0-preview-243323135 926 9/7/2020
1.0.0-preview-1413494063 720 11/2/2021
1.0.0-preview-1405354284 663 10/31/2021
1.0.0-preview-1338129467 706 10/13/2021
1.0.0-preview-1327345305 800 10/11/2021
1.0.0-preview-1325686991 648 10/10/2021
1.0.0-preview-1324682939 799 10/10/2021
1.0.0-preview-1239345497 726 9/15/2021
1.0.0-preview-1227879651 701 9/13/2021
1.0.0-preview-1227810778 714 9/13/2021
1.0.0-preview-1222163389 709 9/10/2021
1.0.0-preview-1177844564 746 8/28/2021
1.0.0-preview-1176119659 653 8/28/2021
1.0.0-preview-1176116073 653 8/28/2021
1.0.0-preview-1176112166 630 8/28/2021
1.0.0-preview-1172193368 645 8/26/2021
1.0.0-preview-1168287221 634 8/25/2021
1.0.0-preview-1147185155 721 8/19/2021
1.0.0-preview-1133286135 768 8/15/2021
1.0.0-preview-1118120224 730 8/10/2021
1.0.0-preview-1111420036 648 8/9/2021
1.0.0-preview-1111385512 587 8/9/2021
1.0.0-preview-1111166736 644 8/9/2021
1.0.0-preview-1088380884 672 8/1/2021
1.0.0-preview-1088311063 675 8/1/2021
1.0.0-preview-1088021240 754 8/1/2021
1.0.0-preview-1083990424 696 7/31/2021
1.0.0-preview-1080710191 678 7/30/2021
1.0.0-preview-1080701269 701 7/30/2021
1.0.0-preview-1079028054 700 7/29/2021
1.0.0-preview-1079000079 700 7/29/2021
1.0.0-preview-1078977564 775 7/29/2021
1.0.0-preview-1069218438 611 7/26/2021
1.0.0-preview-1065692127 740 7/26/2021
1.0.0-preview-1054554829 656 7/22/2021
1.0.0-preview-1054460177 712 7/22/2021
1.0.0-preview-1044919966 710 7/19/2021
1.0.0-preview-1043697034 597 7/19/2021
1.0.0-preview-1001211231 687 7/5/2021
1.0.0-preview-1001204475 686 7/5/2021
0.9.5-preview-243240046 910 9/7/2020
0.9.5-preview-243219862 972 9/7/2020