DWIS.MicroState.Model
2.0.1-build.76
dotnet add package DWIS.MicroState.Model --version 2.0.1-build.76
NuGet\Install-Package DWIS.MicroState.Model -Version 2.0.1-build.76
<PackageReference Include="DWIS.MicroState.Model" Version="2.0.1-build.76" />
paket add DWIS.MicroState.Model --version 2.0.1-build.76
#r "nuget: DWIS.MicroState.Model, 2.0.1-build.76"
// Install DWIS.MicroState.Model as a Cake Addin #addin nuget:?package=DWIS.MicroState.Model&version=2.0.1-build.76&prerelease // Install DWIS.MicroState.Model as a Cake Tool #tool nuget:?package=DWIS.MicroState.Model&version=2.0.1-build.76&prerelease
This package is developed as part of the Society of Petroleum (SPE) Drilling and Wells Interoperability Standards (D-WIS), a sub-committee of the Drilling System Automation Technical Section. This package contains the data model used by the D-WIS microstate interpretation engine.
There are 5 classes:
MicroStates
ProbabilisticMicroStates
SignalGroup
Thresholds
Calibrations
Microstates
The class MicroStates
is used to represent the deterministic version of the interpreted drilling process microstates. It has a TimeStampUTC property and 5 32 bit integers to store the encoded values of the microstates.
Each microstate is encoded on 2 bits, therefore providing 4 combinations with the combination 00 reserved to mean undefined
. The index for each microstate is encoded in an enumeration: MicroStateIndex
.
The MicroStates
class defines two methods to update the value at a given microstate position: UpdateMicroState
and to read the value at a given microstate index: GetValue
. The value is passed as a byte
and only
the two least significant bits are used.
The MicroStates
has the following default semantic:
DynamicDrillingSignal:DeterministicState
ComputedData:DeterministicState#01
JSonDataType:DeterministicState#01
DeterministicState#01 HasDynamicValue DeterministicState
ProcessState:DeterministicProcessState
DeterministicModel:DeterministicProcessState
DeterministicState#01 IsGeneratedBy DeterministicProcessState
DWISDrillingProcessStateInterpreter:ProcessStateInterpreter#01
DeterministicState#01 IsProvidedBy ProcessStateInterpreter#01
This semantic translates into the following semantic graph:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:DeterministicState([DWIS:DeterministicState]) --> opc:string([opc:string]):::opcClass
DWIS:DeterministicState_01([DWIS:DeterministicState_01]) --> ComputedData([ComputedData]):::typeClass
DWIS:DeterministicProcessState([DWIS:DeterministicProcessState]) --> ProcessState([ProcessState]):::typeClass
DWIS:ProcessStateInterpreter_01([DWIS:ProcessStateInterpreter_01]) --> DWISDrillingProcessStateInterpreter([DWISDrillingProcessStateInterpreter]):::typeClass
DWIS:DeterministicState_01([DWIS:DeterministicState_01]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/JSonDataType([http://ddhub.no/JSonDataType]):::classClass
DWIS:DeterministicProcessState([DWIS:DeterministicProcessState]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/DeterministicModel([http://ddhub.no/DeterministicModel]):::classClass
DWIS:DeterministicState_01([DWIS:DeterministicState_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:DeterministicState([DWIS:DeterministicState]):::classClass
DWIS:DeterministicState_01([DWIS:DeterministicState_01]) -- http://ddhub.no/IsGeneratedBy --> DWIS:DeterministicProcessState([DWIS:DeterministicProcessState]):::classClass
DWIS:DeterministicState_01([DWIS:DeterministicState_01]) -- http://ddhub.no/IsProvidedBy --> DWIS:ProcessStateInterpreter_01([DWIS:ProcessStateInterpreter_01]):::classClass
And to retrieve the deterministic microstate on the Blackboard
, one can use the following SparQL query:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?DeterministicState
WHERE {
?DeterministicState_01 rdf:type ddhub:ComputedData .
?DeterministicState_01 rdf:type ddhub:JSonDataType .
?DeterministicState_01 ddhub:HasDynamicValue ?DeterministicState .
?DeterministicProcessState rdf:type ddhub:ProcessState .
?DeterministicProcessState rdf:type ddhub:DeterministicModel .
?DeterministicState_01 ddhub:IsGeneratedBy ?DeterministicProcessState .
?ProcessStateInterpreter_01 rdf:type ddhub:DWISDrillingProcessStateInterpreter .
?DeterministicState_01 ddhub:IsProvidedBy ?ProcessStateInterpreter_01 .
}
The DynamicDrillingSignal
, i.e., the live OPC-UA variable has the type string and contains a Json serialization of the class MicroStates
. The Json schema for the classes defined in
DWIS.MicroState.Model
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MicroStates.json. The meta data describing the semantic of the
class MicroState
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MetaDataMicroStates.json.
There is a method RegisterToBlackboard
to create the manifest file and upload it on the Blackboard
if necessary. The method check if the semantic has already been uploaded and if
that is the case, it only returns a QueryResult
place holder.
There is also a method SendToBlackboard
used for updating the value on the Blackboard
. The QueryResult
place holder must be passed as an argument of the function.
ProbabilisticMicroStates
The class ProbabilisticMicroStates
is used to store the probabilitic version of the drilling process state in terms of microstates. This class defines a TimeStampUTC
property and
all the different microstates in the form of either BernoulliDrillingProperty
or TernaryDrillingProperty
properties. A BernoulliDrillingProperty
gives the probability to be in
of two states. The probability to be in the other state is therefore the complementary value compared to 1. A TernaryDrillingProperty
gives the probabilities to be in each of three
states. The sum of the probabilities is equal to 1.
An overall minimum semantic is defined for the class ProbabilitisticMicroStates
:
DynamicDrillingSignal:ProbabilisticState
ComputedData:ProbabilisticState#01
JSonDataType:ProbabilisticState#01
ProbabilisticState#01 HasDynamicValue ProbabilisticState
ProcessState:ProbabiliticProcessState
StochasticModel:ProbabiliticProcessState
ProbabilisticState#01 IsGeneratedBy ProbabiliticProcessState
DWISDrillingProcessStateInterpreter:ProcessStateInterpreter#01
ProbabilisticState#01 IsProvidedBy ProcessStateInterpreter#01
[SemanticFact("ProbabilisticState", Nouns.Enum.DynamicDrillingSignal)]
This semantic translates into the following semantic graph:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:ProbabilisticState([DWIS:ProbabilisticState]) --> opc:string([opc:string]):::opcClass
DWIS:ProbabilisticState_01([DWIS:ProbabilisticState_01]) --> ComputedData([ComputedData]):::typeClass
DWIS:ProbabiliticProcessState([DWIS:ProbabiliticProcessState]) --> ProcessState([ProcessState]):::typeClass
DWIS:ProcessStateInterpreter_01([DWIS:ProcessStateInterpreter_01]) --> DWISDrillingProcessStateInterpreter([DWISDrillingProcessStateInterpreter]):::typeClass
DWIS:ProbabilisticState_01([DWIS:ProbabilisticState_01]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/JSonDataType([http://ddhub.no/JSonDataType]):::classClass
DWIS:ProbabiliticProcessState([DWIS:ProbabiliticProcessState]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/StochasticModel([http://ddhub.no/StochasticModel]):::classClass
DWIS:ProbabilisticState_01([DWIS:ProbabilisticState_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:ProbabilisticState([DWIS:ProbabilisticState]):::classClass
DWIS:ProbabilisticState_01([DWIS:ProbabilisticState_01]) -- http://ddhub.no/IsGeneratedBy --> DWIS:ProbabiliticProcessState([DWIS:ProbabiliticProcessState]):::classClass
DWIS:ProbabilisticState_01([DWIS:ProbabilisticState_01]) -- http://ddhub.no/IsProvidedBy --> DWIS:ProcessStateInterpreter_01([DWIS:ProcessStateInterpreter_01]):::classClass
And to retrieve the probabilistic microstate on the Blackboard
, one can use the following SparQL query:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?ProbabilisticState
WHERE {
?ProbabilisticState_01 rdf:type ddhub:ComputedData .
?ProbabilisticState_01 rdf:type ddhub:JSonDataType .
?ProbabilisticState_01 ddhub:HasDynamicValue ?ProbabilisticState .
?ProbabiliticProcessState rdf:type ddhub:ProcessState .
?ProbabiliticProcessState rdf:type ddhub:StochasticModel .
?ProbabilisticState_01 ddhub:IsGeneratedBy ?ProbabiliticProcessState .
?ProcessStateInterpreter_01 rdf:type ddhub:DWISDrillingProcessStateInterpreter .
?ProbabilisticState_01 ddhub:IsProvidedBy ?ProcessStateInterpreter_01 .
}
The semantic of each individual properties of the class ProbabilisticMicroStates
is also defined. For instance the semantic graph corresponding to the property AxialVelocityTopOfString
is:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:AxialVelocityTopOfString([DWIS:AxialVelocityTopOfString]) --> opc:array_of_3_double([opc:array_of_3_double]):::opcClass
DWIS:AxialVelocityTopOfString_01([DWIS:AxialVelocityTopOfString_01]) --> ComputedData([ComputedData]):::typeClass
DWIS:tos_01([DWIS:tos_01]) --> TopOfStringReferenceLocation([TopOfStringReferenceLocation]):::typeClass
DWIS:MovingAverage([DWIS:MovingAverage]) --> MovingAverage([MovingAverage]):::typeClass
DWIS:AxialVelocityTopOfString_01([DWIS:AxialVelocityTopOfString_01]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/EnumerationDataType([http://ddhub.no/EnumerationDataType]):::classClass
DWIS:AxialVelocityTopOfString_01([DWIS:AxialVelocityTopOfString_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:AxialVelocityTopOfString([DWIS:AxialVelocityTopOfString]):::classClass
DWIS:AxialVelocityTopOfString_01([DWIS:AxialVelocityTopOfString_01]) -- http://ddhub.no/IsPhysicallyLocatedAt --> DWIS:tos_01([DWIS:tos_01]):::classClass
DWIS:AxialVelocityTopOfString_01([DWIS:AxialVelocityTopOfString_01]) -- http://ddhub.no/IsTransformationOutput --> DWIS:MovingAverage([DWIS:MovingAverage]):::classClass
However, the properties are not stored individually in the Blackboard
, meaning that it is not possible to retrieve only one property at a time by using a SparQL query using
the provided semantic. The purpose of the semantic description for each of the property is to have a formal description of the meaning of the property.
The DynamicDrillingSignal
, i.e., the live OPC-UA variable has the type string and contains a Json serialization of the class ProbabilisticMicroStates
. The Json schema for the classes defined in
DWIS.MicroState.Model
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MicroStates.json. The meta data describing the semantic of the
class ProbabilisticMicroStates
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MetaDataMicroStates.json.
There is a method RegisterToBlackboard
to create the manifest file and upload it on the Blackboard
if necessary. The method check if the semantic has already been uploaded and if
that is the case, it only returns a QueryResult
place holder.
There is also a method SendToBlackboard
used for updating the value on the Blackboard
. The QueryResult
place holder must be passed as an argument of the function.
Thresholds
The Microstate Interpretation Engine
needs thresholds to determine the different states. These thresholds are grouped in a class called Thresholds
. The class Thresholds
has a
TimeStampUTC
property. The other properties are ScalarDrillingProperty
, meaning that their propability distribution is of the Dirac type.
An overall minimum semantic is defined for the class Thresholds
:
DynamicDrillingSignal:MicroStateThresholds
ConfigurationData:MicroStateThresholds#01
MicroStateThresholds#01 HasDynamicValue MicroStateThresholds
DWISDrillingProcessStateInterpreter:MicroStateInterpreter
MicroStateThresholds#01 IsProvidedTo MicroStateInterpreter
MicroStateThresholds#01 IsLimitFor MicroStateInterpreter
This semantic translates into the following semantic graph:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:MicroStateThresholds([DWIS:MicroStateThresholds]) --> opc:string([opc:string]):::opcClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) --> ConfigurationData([ConfigurationData]):::typeClass
DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]) --> DWISDrillingProcessStateInterpreter([DWISDrillingProcessStateInterpreter]):::typeClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:MicroStateThresholds([DWIS:MicroStateThresholds]):::classClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/IsProvidedTo --> DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]):::classClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/IsLimitFor --> DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]):::classClass
And to retrieve the probabilistic microstate on the Blackboard
, one can use the following SparQL query:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?MicroStateThresholds
WHERE {
?MicroStateThresholds_01 rdf:type ddhub:ConfigurationData .
?MicroStateThresholds_01 ddhub:HasDynamicValue ?MicroStateThresholds .
?MicroStateInterpreter rdf:type ddhub:DWISDrillingProcessStateInterpreter .
?MicroStateThresholds_01 ddhub:IsProvidedTo ?MicroStateInterpreter .
?MicroStateThresholds_01 ddhub:IsLimitFor ?MicroStateInterpreter .
}
The semantic of each individual properties of the class Thresholds
is also defined. For instance the semantic graph corresponding to the property ZeroAxialVelocityTopOfStringThreshold
is:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:MicroStateThresholds([DWIS:MicroStateThresholds]) --> opc:string([opc:string]):::opcClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) --> ConfigurationData([ConfigurationData]):::typeClass
DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]) --> DWISDrillingProcessStateInterpreter([DWISDrillingProcessStateInterpreter]):::typeClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:MicroStateThresholds([DWIS:MicroStateThresholds]):::classClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/IsProvidedTo --> DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]):::classClass
DWIS:MicroStateThresholds_01([DWIS:MicroStateThresholds_01]) -- http://ddhub.no/IsLimitFor --> DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]):::classClass
However, the properties are not stored individually in the Blackboard
, meaning that it is not possible to retrieve only one property at a time by using a SparQL query using
the provided semantic. The purpose of the semantic description for each of the property is to have a formal description of the meaning of the property.
The DynamicDrillingSignal
, i.e., the live OPC-UA variable has the type string and contains a Json serialization of the class Thresholds
. The Json schema for the classes defined in
DWIS.MicroState.Model
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MicroStates.json. The meta data describing the semantic of the
class ProbabilisticMicroStates
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MetaDataMicroStates.json.
A producer of content for the Thresholds
can use two methods that are provided for convenience: RegisterToBlackboard
and SendToBlackboard
. The method RegisterToBlackboard
is used to create the manifest file and upload it on the Blackboard
if necessary. The method check if the semantic has already been uploaded and if
that is the case, it only returns a QueryResult
place holder. The method SendToBlackboard
is used for updating the value on the Blackboard
. The QueryResult
place holder must
be passed as an argument of the function.
SignalGroup
The Micro-state Interpretation Engine
needs signals that are typically generated by a digital twin. These signals can be generated individually or grouped into a class called
SignalGroup
. The class SignalGroup
has a property TimeStampUTC
used to define the time and date at which the SignalGroup
has been issued. There are also all the necessary
properties used by the Micro-state Interpretation Engine
to calculate the micro-states. These properties are of type GaussianDrillingProperty
and BernoulliDrillingProperty
,
meaning that an uncertainty is defined for the passed values, whether the value is a scalar or a boolean one.
An overall minimum semantic is defined for the class SignalGroup
:
DynamicDrillingSignal:DigitalTwinSignalsForMicroStates
DigitalTwinAdvice: DigitalTwinSignalsForMicroStates#01
DigitalTwinSignalsForMicroStates#01 HasDynamicValue DigitalTwinSignalsForMicroStates
Simulator:DigitalTwin
DigitalTwinSignalsForMicroStates#01 IsRecommendedBy DigitalTwin
DWISDrillingProcessStateInterpreter:MicroStateInterpreter
DigitalTwinSignalsForMicroStates#01 IsProvidedTo MicroStateInterpreter
This semantic translates into the following semantic graph:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:DigitalTwinSignalsForMicroStates([DWIS:DigitalTwinSignalsForMicroStates]) --> opc:string([opc:string]):::opcClass
DWIS:DigitalTwinSignalsForMicroStates_01([DWIS:DigitalTwinSignalsForMicroStates_01]) --> DigitalTwinAdvice([DigitalTwinAdvice]):::typeClass
DWIS:DigitalTwin([DWIS:DigitalTwin]) --> Simulator([Simulator]):::typeClass
DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]) --> DWISDrillingProcessStateInterpreter([DWISDrillingProcessStateInterpreter]):::typeClass
DWIS:DigitalTwinSignalsForMicroStates_01([DWIS:DigitalTwinSignalsForMicroStates_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:DigitalTwinSignalsForMicroStates([DWIS:DigitalTwinSignalsForMicroStates]):::classClass
DWIS:DigitalTwinSignalsForMicroStates_01([DWIS:DigitalTwinSignalsForMicroStates_01]) -- http://ddhub.no/IsRecommendedBy --> DWIS:DigitalTwin([DWIS:DigitalTwin]):::classClass
DWIS:DigitalTwinSignalsForMicroStates_01([DWIS:DigitalTwinSignalsForMicroStates_01]) -- http://ddhub.no/IsProvidedTo --> DWIS:MicroStateInterpreter([DWIS:MicroStateInterpreter]):::classClass
And to retrieve the probabilistic microstate on the Blackboard
, one can use the following SparQL query:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?DigitalTwinSignalsForMicroStates
WHERE {
?DigitalTwinSignalsForMicroStates_01 rdf:type ddhub:DigitalTwinAdvice .
?DigitalTwinSignalsForMicroStates_01 ddhub:HasDynamicValue ?DigitalTwinSignalsForMicroStates .
?DigitalTwin rdf:type ddhub:Simulator .
?DigitalTwinSignalsForMicroStates_01 ddhub:IsRecommendedBy ?DigitalTwin .
?MicroStateInterpreter rdf:type ddhub:DWISDrillingProcessStateInterpreter .
?DigitalTwinSignalsForMicroStates_01 ddhub:IsProvidedTo ?MicroStateInterpreter .
}
The DynamicDrillingSignal
, i.e., the live OPC-UA variable has the type string and contains a Json serialization of the class SignalGroup
. The Json schema for the classes defined in
DWIS.MicroState.Model
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MicroStates.json. The meta data describing the semantic of the
class ProbabilisticMicroStates
can be found here: https://github.com/D-WIS/MicroStateEngine/blob/main/DWIS.MicroState.JsonSchema/MetaDataMicroStates.json.
The semantic of each individual properties of the class SignalGroup
is also defined. For instance the semantic graph corresponding to the property UCS
is:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:UCS_bh([DWIS:UCS_bh]) --> DynamicDrillingSignal([DynamicDrillingSignal]):::typeClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) --> PhysicalData([PhysicalData]):::typeClass
DWIS:MovingAverage([DWIS:MovingAverage]) --> MovingAverage([MovingAverage]):::typeClass
DWIS:CuttingsComponent_01([DWIS:CuttingsComponent_01]) --> CuttingsComponent([CuttingsComponent]):::typeClass
DWIS:bh_01([DWIS:bh_01]) --> HoleBottomLocation([HoleBottomLocation]):::typeClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/ContinuousDataType([http://ddhub.no/ContinuousDataType]):::classClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:UCS_bh([DWIS:UCS_bh]):::classClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/IsOfMeasurableQuantity --> FormationStrengthDrilling([FormationStrengthDrilling]):::quantityClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/IsTransformationOutput --> DWIS:MovingAverage([DWIS:MovingAverage]):::classClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/ConcernsAFluidComponent --> DWIS:CuttingsComponent_01([DWIS:CuttingsComponent_01]):::classClass
DWIS:UCS_bh_01([DWIS:UCS_bh_01]) -- http://ddhub.no/IsPhysicallyLocatedAt --> DWIS:bh_01([DWIS:bh_01]):::classClass
And the one for UCSSlope
is:
flowchart TD
classDef typeClass fill:#f96;
classDef classClass fill:#9dd0ff;
classDef opcClass fill:#ff9dd0;
classDef quantityClass fill:#d0ff9d;
DWIS:UCSSlope_bh([DWIS:UCSSlope_bh]) --> DynamicDrillingSignal([DynamicDrillingSignal]):::typeClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) --> PhysicalData([PhysicalData]):::typeClass
DWIS:MovingAverage([DWIS:MovingAverage]) --> MovingAverage([MovingAverage]):::typeClass
DWIS:CuttingsComponent_01([DWIS:CuttingsComponent_01]) --> CuttingsComponent([CuttingsComponent]):::typeClass
DWIS:bh_01([DWIS:bh_01]) --> HoleBottomLocation([HoleBottomLocation]):::typeClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/BelongsToClass --> http://ddhub.no/ContinuousDataType([http://ddhub.no/ContinuousDataType]):::classClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/HasDynamicValue --> DWIS:UCSSlope_bh([DWIS:UCSSlope_bh]):::classClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/IsOfMeasurableQuantity --> PressureGradientPerLengthDrilling([PressureGradientPerLengthDrilling]):::quantityClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/IsTransformationOutput --> DWIS:MovingAverage([DWIS:MovingAverage]):::classClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/ConcernsAFluidComponent --> DWIS:CuttingsComponent_01([DWIS:CuttingsComponent_01]):::classClass
DWIS:UCSSlope_bh_01([DWIS:UCSSlope_bh_01]) -- http://ddhub.no/IsPhysicallyLocatedAt --> DWIS:bh_01([DWIS:bh_01]):::classClass
If a signal is published individually, i.e., outside a SignalGroup
, it can be retrieve by using multiple altenative SparQL queries to accomodate with various possible way of
defining the signal. Here is a example based on AxialVelocityTopOfString
:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?sigma_v_tos ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?sigma_v_tos_01 rdf:type ddhub:DrillingDataPoint .
?sigma_v_tos_01 ddhub:HasValue ?sigma_v_tos .
?GaussianUncertainty_01 rdf:type ddhub:GaussianUncertainty .
?v_tos_01 ddhub:HasUncertainty ?GaussianUncertainty_01 .
?GaussianUncertainty_01 ddhub:HasUncertaintyStandardDeviation ?sigma_v_tos_01 .
BIND (' 1' as ?factOptionSet)
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?sigma_v_tos ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?sigma_v_tos_01 rdf:type ddhub:DrillingDataPoint .
?sigma_v_tos_01 ddhub:HasValue ?sigma_v_tos .
?GaussianUncertainty_01 rdf:type ddhub:GaussianUncertainty .
?v_tos_01 ddhub:HasUncertainty ?GaussianUncertainty_01 .
?GaussianUncertainty_01 ddhub:HasUncertaintyStandardDeviation ?sigma_v_tos_01 .
?GaussianUncertainty_01 ddhub:HasUncertaintyMean ?v_tos_01 .
BIND (' 1 11' as ?factOptionSet)
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?v_tos_prec ?v_tos_acc ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?v_tos_prec_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_prec_01 ddhub:HasValue ?v_tos_prec .
?v_tos_acc_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_acc_01 ddhub:HasValue ?v_tos_acc .
?SensorUncertainty_01 rdf:type ddhub:SensorUncertainty .
?SensorUncertainty_01 ddhub:HasUncertaintyPrecision ?v_tos_prec_01 .
?SensorUncertainty_01 ddhub:HasUncertaintyAccuracy ?v_tos_acc_01 .
?v_tos_01 ddhub:HasUncertainty ?SensorUncertainty_01 .
BIND (' 2' as ?factOptionSet)
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?v_tos_prec ?v_tos_acc ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?v_tos_prec_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_prec_01 ddhub:HasValue ?v_tos_prec .
?v_tos_acc_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_acc_01 ddhub:HasValue ?v_tos_acc .
?SensorUncertainty_01 rdf:type ddhub:SensorUncertainty .
?SensorUncertainty_01 ddhub:HasUncertaintyPrecision ?v_tos_prec_01 .
?SensorUncertainty_01 ddhub:HasUncertaintyAccuracy ?v_tos_acc_01 .
?v_tos_01 ddhub:HasUncertainty ?SensorUncertainty_01 .
?SensorUncertainty_01 ddhub:HasUncertaintyMean ?v_tos_01 .
BIND (' 2 21' as ?factOptionSet)
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?v_tos_fs ?v_tos_prop ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?v_tos_fs_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_fs_01 ddhub:HasValue ?v_tos_fs_01 .
?v_tos_prop_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_prop_01 ddhub:HasValue ?v_tos_prop_01 .
?FullScaleUncertainty_01 rdf:type ddhub:FullScaleUncertainty .
?FullScaleUncertainty_01 ddhub:HasFullScale ?v_tos_fs_01 .
?FullScaleUncertainty_01 ddhub:HasProportionError ?v_tos_prop_01 .
?v_tos_01 ddhub:HasUncertainty ?FullScaleUncertainty_01 .
BIND (' 3' as ?factOptionSet)
}
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ddhub:<http://ddhub.no/>
PREFIX quantity:<http://ddhub.no/UnitAndQuantity>
SELECT ?v_tos ?v_tos_fs ?v_tos_prop ?factOptionSet
WHERE {
?v_tos_01 rdf:type ddhub:PhysicalData .
?v_tos_01 rdf:type ddhub:ContinuousDataType .
?v_tos_01 ddhub:HasDynamicValue ?v_tos .
?v_tos_01 ddhub:IsOfMeasurableQuantity quantity:BlockVelocityDrilling .
?tos_01 rdf:type ddhub:TopOfStringReferenceLocation .
?v_tos_01 ddhub:IsPhysicallyLocatedAt ?tos_01 .
?MovingAverage rdf:type ddhub:MovingAverage .
?v_tos_01 ddhub:IsTransformationOutput ?MovingAverage .
?v_tos_fs_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_fs_01 ddhub:HasValue ?v_tos_fs_01 .
?v_tos_prop_01 rdf:type ddhub:DrillingDataPoint .
?v_tos_prop_01 ddhub:HasValue ?v_tos_prop_01 .
?FullScaleUncertainty_01 rdf:type ddhub:FullScaleUncertainty .
?FullScaleUncertainty_01 ddhub:HasFullScale ?v_tos_fs_01 .
?FullScaleUncertainty_01 ddhub:HasProportionError ?v_tos_prop_01 .
?v_tos_01 ddhub:HasUncertainty ?FullScaleUncertainty_01 .
?FullScaleUncertainty_01 ddhub:HasUncertaintyMean ?v_tos_01 .
BIND (' 3 31' as ?factOptionSet)
}
These SparQL queries can be automatically generated using the semantic that is defined for each individual property. Here is an example in C#:
Assembly? assembly = Assembly.GetAssembly(typeof(SignalGroup));
var queries1 = GeneratorSparQLManifestFile.GetSparQLQueries(assembly, typeof(SignalGroup).FullName, "AxialVelocityTopOfString");
There are three methods that are defined in the class SignalGroup
to interact with the Blackboard
. One is RegisterToBlackboard
to register a SignalGroup
signal on the
Blackboard
. This method is used to create a manifest file and upload it on the Blackboard
if necessary. The method check if the semantic has already been uploaded and if that
is the case, it only returns a QueryResult
place holder. The method SendToBlackboard
is used for updating the value on the Blackboard
. The QueryResult
place holder
must be passed as an argument of the function. There is also another RegisterToBlackboard
method that allows to register all the individual signals defined in the SignalGroup
class. This method can be used by a digital twin that generates individal signals instead of a group of signals.
Calibrations
The class Calibrations
defines a dictionary of CalibrationParameters
. A CalibrationParameters
is a class that define the Scaling
, Bias
and Delay
that
are necessary to minimize the differences of a series of measurements compared to other series of measurements produced by other digital twins. The dictionary has
two levels. The first level concerns the properties of the SignalGroup
classes. Then for each DrillingProperty
in the SignalGroup
that has a series of
data providers, there is a dictionary of CalibrationParameters
for each of the sources. A data source is characterized by an object of the type DWISNodeID
.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. net9.0 was computed. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. |
-
net8.0
- Accord.Math (>= 3.8.0)
- DWIS.Client.ReferenceImplementation (>= 2.1.9)
- OSDC.DotnetLibraries.Drilling.DrillingProperties (>= 10.2.2-build.13)
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
2.0.1-build.76 | 85 | 12/12/2024 |
2.0.1-build.60 | 61 | 10/21/2024 |
2.0.1-build.53 | 57 | 10/17/2024 |
2.0.1-build.47 | 53 | 10/11/2024 |
2.0.1-alpha.40 | 53 | 10/10/2024 |
2.0.1-alpha.36 | 51 | 10/9/2024 |
2.0.1-alpha.34 | 54 | 10/9/2024 |
2.0.1-alpha.32 | 52 | 10/9/2024 |
1.0.2 | 155 | 9/30/2024 |
1.0.1 | 105 | 9/22/2024 |
1.0.0 | 113 | 9/3/2024 |