CsvReaderAdvanced 2.4.1
dotnet add package CsvReaderAdvanced --version 2.4.1
NuGet\Install-Package CsvReaderAdvanced -Version 2.4.1
<PackageReference Include="CsvReaderAdvanced" Version="2.4.1" />
paket add CsvReaderAdvanced --version 2.4.1
#r "nuget: CsvReaderAdvanced, 2.4.1"
// Install CsvReaderAdvanced as a Cake Addin #addin nuget:?package=CsvReaderAdvanced&version=2.4.1 // Install CsvReaderAdvanced as a Cake Tool #tool nuget:?package=CsvReaderAdvanced&version=2.4.1
CsvReaderAdvanced
The faster and most modern CSV reader adapted to DI principles.
Combine the power of the configuration JSON files with customized CSV reading.
How to install
Via tha Package Manager:
Install-Package CsvReaderAdvanced
Via the .NET CLI
dotnet add package CsvReaderAdvanced
How to use
First add the service to the ServiceCollection.
builder.ConfigureServices((context, services) =>
{
services.AddCsvReader(context.Configuration);
...
Csv schemas via appsettings.json
To understand exactly what the method does, it assumes that the current configuration file contains a csvSchemas
section, typically in the appsettings.json
file:
public static IServiceCollection AddCsvReader(this IServiceCollection services, IConfiguration configuration)
{
services.AddScoped<CsvReader>();
services.AddScoped<CsvFileFactory>();
//Microsoft.Extensions.Hosting must be referenced
services.Configure<CsvSchemaOptions>(configuration.GetSection(CsvSchemaOptions.CsvSchemasSection));
return services;
}
The schema in the appsettings.json
file typically contains a property named csvSchemas
:
"csvSchemas": {
"schemas": [
{
"name": "products",
"fields": [
{
"name": "ProductID",
"alternatives": [ "Product ID" ],
"required": true
},
{
"name": "Weight",
"unit": "t",
"alternativeFields": [ "Volume", "TEU" ],
"required": true
},
{
"name": "Volume",
"unit": "m^3",
"alternativeUnits": [ "m3", "m^3" ]
...
We assume that we get the options via DI like the following example:
public Importer(
IServiceProvider provider,
ILogger logger,
IOptions<CsvSchemaOptions> options)
{
_provider = provider;
_logger = logger;
_options = options.Value;
}
protected readonly IServiceProvider _provider;
protected readonly ILogger _logger;
protected readonly CsvSchemaOptions _options;
public CsvSchema? GetSchema(string name) =>
_options?.Schemas?.FirstOrDefault(s => s.Name == name);
public ValidationResult CheckForSchema(string name)
{
if (_options?.Schemas is null || !_options.Schemas.Any())
{
_logger.LogError("Could not retrieve csv schemas from settings");
return new ValidationResult(
new ValidationFailure[] { new ValidationFailure("CsvSchemas", "Cannot retrieve csv schemas from settings") });
}
var schema = GetSchema(name);
if (schema is null)
{
_logger.LogError("Could not retrieve '{schemaName}' schema from settings",name);
return new ValidationResult(
new ValidationFailure[] { new ValidationFailure(name, $"Cannot retrieve '{name}' schema from settings") });
}
return new ValidationResult();
}
Read the file
We instantiate a CsvFile
via the CsvFileFactory
(NOTE: this has changed in version 2.0). Note that the aforementioned CsvSchema
is not needed if we do not have a header and/or do not want to validate the existence of fields.
For the example below, we assume that a CsvSchema
is checked.
//We assume that _provider is an IServiceProvider which is injected via DI
var fileFactory = _provider.GetCsvFileFactory();
var file = fileFactory.ReadWholeFile(path, Encoding.UTF8, withHeader:true);
//To minimally instantiate the file we should call the GetFile, which reads the header
var file = fileFactory.GetFile(path, Encoding.UTF8, withHeader:true);
If the withHeader
argument is true
, then the ReadHeader()
method is called which populates the Header
property. The PopulateColumns()
method updates the internal ExistingColumns
dictionary. The ExistingColumns
dictionary is case insensitive and stores the index location for each column. The index location is zero-based.
To check the existence of fields against a schema we should call the CheckAgainstSchema()
method as shown below:
CsvScema schema = _options.Schemas.FirstOrDefault(s => s.Name == "products");
file.CheckAgainstSchema(schema);
The CheckAgainstSchema()
method also calls the PopulateColumns()
method if the ExistingColumns
property is not populated. It then updates the ExistingFieldColumns
dictionary, which is a dictionary of the column index location based on the field name.
Additional properties (Hashsets) are populated: MissingFields
, MissingRequiredFields
.
Lines and ParsedValue
The most important updated property after the ReadFromFile()
call is the Lines
property, whic is a List of TokenizedLine?
objects.
The TokenizedLine
struct contains the Tokens
property which is a List of string
objects. The power of this library is that each TokenizedLine
may potentially span more than 1 lines. This can occur in the case of quoted strings which may span to the next line. In general all cases where quoted strings are met, are cases where a simple string.Split()
cannot work.
That's why the properties FromLine
to ToLine
exist. The latter are important for debugging purposes.
The GetDouble
/GetFloat
/GetString
/GetInt
/GetByte
/GetLong
/GetDateTime
/GetDateTimeOffset
methods return a ParsedValue<T>
struct. The ParsedValue
is a useful wrapper the contains a Value
, a IsParsed
and a IsNull
property.
var c = file.ExistingFieldColumns;
//we can use the following instead, in case we want to use the original field names within the header the CSV file
//var c = file.ExistingColumns;
foreach (var line in file.Lines)
{
TokenizedLine l = line.Value;
//for strings we can immediately retrieve the token based on the field name
string name = l.Tokens[c["ProductName"]];
var weightValue = l.GetDouble("Weight", c);
if (!weightValue.Parsed)
_logger.LogError("Cannot parse Weight {value} at line {line}.", weightValue.Value, l.FromLine);
else
{
//implicit conversion to double if value exists
double weight = weightValue;
...
}
//or implicit conversion to double? - can be both null or non null
double? weight2 = weightValue;
...
Example 1 - Simple case without schema
Let's assume that we have a simple csv file with known headers. The simplest case is to use the ExistingColumns
property.
This is populated after the call to ReadFromFile
when the withHeader
argument is set to true
.
Suppose that there are 3 labels in the header, namely: FullName, DoubleValue and IntValue representing a string, double and int field for each record. The sample content of the file is the following:
FullName;DoubleValue;IntValue
name1;20.0;4
name2;30.0;5
The full code to read them is then:
//build the app
var host = Host.CreateDefaultBuilder(args).ConfigureServices((c, s) => s.AddCsvReader(c.Configuration));
var app = host.Build();
string path = @".\samples\hard.csv";
//read the whole file
var file = app.Services.GetCsvFileFactory()
.ReadWholeFile(path, Encoding.UTF8, withHeader: true);
//get the values
var c = file.ExistingColumns; //Dictionary<string, int>
foreach (var l in file.Lines!)
{
if (!l.HasValue) return;
var t = l.Value.Tokens; //List<string>
string? v1 = l.Value.GetString("FullName", c);
double? v2 = l.Value.GetDouble("DoubleValue", c);
int? v3 = l.Value.GetInt("IntValue", c);
...
}
Example 2 - Avoid preloading the whole data from the file
We can use the Read
method in order to load the file in a lazy-read manner (i.e. the lines are not pre-loaded). In this case we should instantiate the CsvFile
instance using the GetFile
method instead. See the modified example below, which in practice saves memory in many cases:
//read the header only from the file
CsvFile file = app.Services.GetCsvFileFactory()
.GetFile(path, Encoding.UTF8, withHeader: true);
//get the values
var c = file.ExistingColumns; //Dictionary<string, int>
//lazy enumerate using the Read function
foreach (TokenizedLine? l in file.Read(skipHeader: true))
{
if (!l.HasValue) return;
var t = l.Value.Tokens; //List<string>
STAY TUNED
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net9.0 is compatible. |
-
net9.0
- FluentValidation (>= 11.11.0)
- Microsoft.Extensions.Hosting (>= 9.0.0)
NuGet packages (2)
Showing the top 2 NuGet packages that depend on CsvReaderAdvanced:
Package | Downloads |
---|---|
EndpointProviders
A modern way to add Dependency Injection used for Minimal API apps. See README. |
|
SqlServerExplorerLib
The easiest way to perform SQL Server operations, such as viewing table fields, copying table data to a file, or transferring table data between databases. See the README for more information. |
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated | |
---|---|---|---|
2.4.1 | 76 | 12/27/2024 | |
2.4.0 | 185 | 11/15/2024 | |
2.3.8 | 142 | 10/16/2024 | |
2.3.7 | 153 | 7/27/2024 | |
2.3.6 | 111 | 7/27/2024 | |
2.3.5 | 89 | 7/26/2024 | |
2.3.4 | 106 | 7/12/2024 | |
2.3.3 | 123 | 6/22/2024 | |
2.3.2 | 112 | 6/22/2024 | |
2.3.1 | 320 | 3/1/2024 | |
2.3.0 | 223 | 12/13/2023 | |
2.2.1 | 158 | 11/28/2023 | |
2.2.0 | 187 | 10/17/2023 | |
2.1.1 | 153 | 10/15/2023 | |
2.1.0 | 138 | 10/15/2023 | |
1.3.3 | 133 | 10/14/2023 | |
1.3.2 | 126 | 10/14/2023 | |
1.3.0 | 145 | 10/13/2023 | |
1.2.6 | 152 | 9/29/2023 | |
1.2.5 | 202 | 7/18/2023 | |
1.2.4 | 198 | 7/16/2023 | |
1.2.2 | 166 | 7/16/2023 | |
1.2.1 | 176 | 7/14/2023 | |
1.2.0 | 171 | 7/14/2023 | |
1.1.15 | 177 | 7/14/2023 | |
1.1.14 | 176 | 7/14/2023 | |
1.1.13 | 187 | 7/7/2023 | |
1.1.12 | 279 | 7/6/2023 | |
1.1.11 | 164 | 7/5/2023 | |
1.1.10 | 186 | 7/5/2023 | |
1.1.9 | 166 | 6/27/2023 | |
1.1.8 | 152 | 6/26/2023 | |
1.1.7 | 154 | 6/24/2023 | |
1.1.6 | 150 | 6/24/2023 | |
1.1.5 | 153 | 6/23/2023 | |
1.1.2 | 160 | 6/23/2023 | |
1.0.28 | 171 | 6/23/2023 | |
1.0.27 | 163 | 6/23/2023 | |
1.0.26 | 146 | 6/19/2023 | |
1.0.25 | 173 | 6/18/2023 | |
1.0.24 | 153 | 6/18/2023 | |
1.0.23 | 172 | 6/18/2023 | |
1.0.22 | 160 | 6/18/2023 | |
1.0.21 | 159 | 6/17/2023 | |
1.0.20 | 159 | 6/17/2023 | |
1.0.19 | 157 | 6/17/2023 | |
1.0.18 | 160 | 6/17/2023 | |
1.0.17 | 170 | 6/17/2023 | |
1.0.16 | 156 | 6/17/2023 | |
1.0.15 | 158 | 6/17/2023 | |
1.0.12 | 152 | 6/17/2023 | |
1.0.11 | 162 | 6/17/2023 | |
1.0.10 | 145 | 6/17/2023 | |
1.0.9 | 154 | 6/17/2023 | |
1.0.8 | 163 | 6/17/2023 | |
1.0.7 | 149 | 6/17/2023 | |
1.0.6 | 162 | 6/16/2023 | |
1.0.5 | 175 | 6/16/2023 | |
1.0.4 | 152 | 6/16/2023 | |
1.0.2 | 144 | 6/16/2023 |