Tensor 0.4.11

.NET Standard 2.0
Install-Package Tensor -Version 0.4.11
dotnet add package Tensor --version 0.4.11
<PackageReference Include="Tensor" Version="0.4.11" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Tensor --version 0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.
#r "nuget: Tensor, 0.4.11"
#r directive can be used in F# Interactive, C# scripting and .NET Interactive. Copy this into the interactive tool or source code of the script to reference the package.
// Install Tensor as a Cake Addin
#addin nuget:?package=Tensor&version=0.4.11

// Install Tensor as a Cake Tool
#tool nuget:?package=Tensor&version=0.4.11
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Tensor (n-dimensional array) library for F#

     Core features:
       - n-dimensional arrays (tensors) in host memory or on CUDA GPUs
       - element-wise operations (addition, multiplication, absolute value, etc.)
       - basic linear algebra operations (dot product, SVD decomposition, matrix inverse, etc.)
       - reduction operations (sum, product, average, maximum, arg max, etc.)
       - logic operations (comparision, and, or, etc.)
       - views, slicing, reshaping, broadcasting (similar to NumPy)
       - scatter and gather by indices
       - standard functional operations (map, fold, etc.)

     Data exchange:
       - read/write support for HDF5 (.h5)
       - interop with standard F# types (Seq, List, Array, Array2D, Array3D, etc.)

     Performance:
       - host: SIMD and BLAS accelerated operations
         - by default Intel MKL is used (shipped with NuGet package)
         - other BLASes (OpenBLAS, vendor-specific) can be selected by configuration option
       - CUDA GPU: all operations performed locally on GPU and cuBLAS used for matrix operations

     Requirements:
       - Linux, MacOS or Windows on x64
       - Linux requires libgomp.so.1 installed.

     Additional algorithms are provided in the Tensor.Algorithm package.

Product Versions
.NET net5.0 net5.0-windows net6.0 net6.0-android net6.0-ios net6.0-maccatalyst net6.0-macos net6.0-tvos net6.0-windows
.NET Core netcoreapp2.0 netcoreapp2.1 netcoreapp2.2 netcoreapp3.0 netcoreapp3.1
.NET Standard netstandard2.0 netstandard2.1
.NET Framework net461 net462 net463 net47 net471 net472 net48
MonoAndroid monoandroid
MonoMac monomac
MonoTouch monotouch
Tizen tizen40 tizen60
Xamarin.iOS xamarinios
Xamarin.Mac xamarinmac
Xamarin.TVOS xamarintvos
Xamarin.WatchOS xamarinwatchos
Compatible target framework(s)
Additional computed target framework(s)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (3)

Showing the top 3 NuGet packages that depend on Tensor:

Package Downloads
DeepNet

Deep learning library for F#. Provides symbolic model differentiation, automatic differentiation and compilation to CUDA GPUs. Includes optimizers and model blocks used in deep learning. Make sure to set the platform of your project to x64.

RPlotTools

Tools for plotting using R from F#.

Tensor.Algorithm

Data types: - arbitrary precision rational numbers Matrix algebra (integer, rational): - Row echelon form - Smith normal form - Kernel, cokernel and (pseudo-)inverse Matrix decomposition (floating point): - Principal component analysis (PCA) - ZCA whitening Misc: - Bezout's identity - Loading of NumPy's .npy and .npz files.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.4.11 5,121 5/8/2018
0.4.11-v0.4.11-215 525 5/8/2018
0.4.11-symtensor-core-242 621 11/15/2018
0.4.11-symtensor-core-241 573 11/15/2018
0.4.11-symtensor-core-240 582 11/15/2018
0.4.11-symtensor-core-239 573 11/15/2018
0.4.11-symtensor-core-238 576 11/15/2018
0.4.11-symtensor-core-237 611 11/15/2018
0.4.11-symtensor-core-236 559 11/14/2018
0.4.11-symtensor-core-235 572 11/14/2018
0.4.11-symtensor-core-234 574 11/14/2018
0.4.11-symtensor-core-231 582 11/9/2018
0.4.11-symtensor-core-230 600 11/9/2018
0.4.11-symtensor-core-229 558 11/8/2018
0.4.11-symtensor-core-228 569 11/8/2018
0.4.11-symtensor-core-227 609 10/30/2018
0.4.11-symtensor-core-226 618 10/30/2018
0.4.11-symtensor-core-225 545 10/30/2018
0.4.11-develop-216 763 5/8/2018
0.4.10-develop-213 766 5/8/2018
0.4.10-develop-212 752 5/7/2018
0.4.10-develop-211 774 5/7/2018
0.3.0.712-master 633 9/1/2017
0.3.0.711-master 638 9/1/2017
0.3.0.710-master 614 9/1/2017
0.3.0.709-master 599 8/31/2017
0.3.0.708-master 626 8/30/2017
0.3.0.707-master 646 8/30/2017
0.3.0.706-master 623 8/30/2017
0.3.0.701-master 660 6/26/2017
0.3.0.700-master 675 6/22/2017
0.3.0.699-master 651 6/22/2017
0.3.0.698-master 647 6/21/2017
0.3.0.697-master 647 6/21/2017
0.3.0.696-master 680 6/21/2017
0.3.0.695-master 648 6/21/2017
0.3.0.694-master 642 6/21/2017
0.3.0.693-master 652 6/20/2017
0.3.0.692-master 638 6/19/2017
0.3.0.691-master 667 6/19/2017
0.3.0.690-master 659 6/19/2017
0.3.0.689-master 647 5/14/2017
0.3.0.688 6,291 5/14/2017
0.3.0.686-master 656 5/14/2017
0.2.0.591-master 652 4/19/2017
0.2.0.565-master 669 4/11/2017
0.2.0.556-master 651 3/21/2017
0.2.0.551-master 709 3/17/2017
0.2.0.540-master 647 3/15/2017
0.2.0.536-master 639 3/14/2017
0.2.0.519-master 665 3/2/2017
0.2.0.516-master 644 3/2/2017
0.2.0.499-master 667 2/13/2017
0.2.0.494-master 643 2/7/2017
0.2.0.479-master 665 2/1/2017
0.2.0.463-master 660 1/17/2017
0.2.0.431-master 738 12/2/2016
0.2.0.422-master 1,035 11/9/2016
0.2.0.421-master 972 11/9/2016
0.2.0.411-master 711 10/26/2016
0.2.0.400-master 666 10/26/2016
0.2.0.394-master 689 10/25/2016
0.2.0.382-master 675 10/21/2016
0.2.0.377-master 665 10/20/2016
0.2.0.323-master 656 10/11/2016
0.2.0.262-master 684 9/29/2016
0.2.0.248-master 683 9/27/2016
0.2.0.174-master 692 9/16/2016
0.2.0.128-master 690 9/8/2016
0.2.0.122-master 692 9/8/2016
0.2.0.121-master 672 9/7/2016
0.2.0.111-master 666 9/7/2016
0.2.0.105-ci 727 9/5/2016
0.2.0.97-ci 715 8/30/2016
0.2.0.96-ci 694 8/29/2016
0.2.0.90-ci 680 8/25/2016
0.2.0.89-ci 670 8/24/2016
0.2.0.88-ci 681 8/24/2016
0.2.0.87-ci 690 8/24/2016
0.2.0.86-ci 681 8/23/2016
0.2.0.85-ci 685 8/22/2016
0.2.0.84-ci 692 8/22/2016
0.2.0.83-ci 701 8/22/2016
0.2.0.82 1,596 8/22/2016
0.2.0.81-ci 708 8/19/2016
0.2.0.80-ci 709 6/27/2016
0.2.0.79-ci 698 6/27/2016
0.2.0.77-ci 700 6/22/2016
0.2.0.76-ci 711 6/22/2016
0.2.0.75 1,085 6/15/2016
0.2.0.74-ci 1,053 6/15/2016
0.2.0.73 1,294 6/15/2016
0.2.0.72 1,306 6/15/2016
0.2.0.71 1,261 6/14/2016
0.2.0.70 1,167 6/9/2016
0.2.0.69 1,134 6/9/2016
0.2.0.68 940 6/9/2016
0.2.0.67 1,434 6/8/2016
0.2.0.66-ci 701 6/8/2016
0.2.0.65-ci 705 6/8/2016
0.2.0.64-ci 750 6/8/2016
0.2.0.63-ci 684 6/7/2016
0.2.0.62 963 6/7/2016
0.2.0.61 937 6/6/2016
0.2.0.60 922 6/6/2016
0.2.0.59 915 6/6/2016
0.2.0.57 949 6/3/2016
0.2.0.56 926 6/3/2016
0.2.0.55 1,002 6/3/2016
0.2.0.54 951 6/3/2016
0.2.0.53 1,286 6/3/2016
0.2.0.52-ci 678 6/2/2016
0.2.0.51-ci 704 6/2/2016
0.2.0.50-ci 708 6/2/2016
0.2.0.49 1,305 5/31/2016
0.2.0.48-ci 744 5/31/2016
0.2.0.46-ci 721 5/31/2016
0.2.0.45 1,060 5/31/2016
0.2.0.44 1,068 5/31/2016
0.2.0.43 1,066 5/31/2016
0.2.0.42 1,083 5/30/2016
0.2.0.41 1,076 5/30/2016
0.2.0.40 1,104 5/30/2016
0.2.0.39 1,084 5/30/2016
0.2.0.38 1,067 5/30/2016
0.2.0.37 1,032 5/30/2016
0.2.0.36 1,039 5/25/2016
0.2.0.35 1,055 5/24/2016
0.2.0.34 1,093 5/24/2016
0.2.0.33 1,887 5/24/2016
0.2.0.32-ci 709 5/24/2016
0.1.26-ci 730 5/24/2016
0.1.24-ci 723 5/24/2016
0.1.19-ci 702 5/24/2016