MathNet.Numerics.FSharp 4.7.0

Math.NET Numerics for F#

F# Modules for Math.NET Numerics, the numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net Framework 4.5 or higher and .Net Standard 1.6 or higher, on Windows, Linux and Mac.

There is a newer prerelease version of this package available.
See the version list below for details.
Install-Package MathNet.Numerics.FSharp -Version 4.7.0
dotnet add package MathNet.Numerics.FSharp --version 4.7.0
<PackageReference Include="MathNet.Numerics.FSharp" Version="4.7.0" />
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add MathNet.Numerics.FSharp --version 4.7.0
The NuGet Team does not provide support for this client. Please contact its maintainers for support.

Release Notes

Special Functions: Airy functions Ai, Bi ~Jong Hyun Kim
Special Functions: Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Modified Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Spherical Bessel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Hankel functions of the first and second kind ~Jong Hyun Kim
Special Functions: Kelvin functions of the first and second kind, and derivatives ~Jong Hyun Kim
Linear Algebra: optimized sparse implementation of transpose-multiply ~Richard Reader
Linear Algebra: optimized range checking in vectors and matrices

Version History

Version Downloads Last updated
4.8.0-beta01 60 4/28/2019
4.7.0 13,338 11/11/2018
4.6.0 1,388 10/19/2018
4.5.1 16,549 5/22/2018
4.5.0 189 5/22/2018
4.4.1 457 5/6/2018
4.4.0 10,645 2/25/2018
4.3.0 224 2/24/2018
4.2.0 309 2/21/2018
4.1.0 420 2/19/2018
4.0.0 1,508 2/11/2018
4.0.0-beta07 185 2/10/2018
4.0.0-beta06 206 2/3/2018
4.0.0-beta05 209 1/22/2018
4.0.0-beta04 195 1/13/2018
4.0.0-beta03 184 1/9/2018
4.0.0-beta02 277 1/7/2018
4.0.0-beta01 183 1/7/2018
4.0.0-alpha04 178 1/5/2018
4.0.0-alpha03 197 12/26/2017
4.0.0-alpha02 225 11/30/2017
4.0.0-alpha01 190 11/26/2017
3.20.2 2,660 1/22/2018
3.20.1 405 1/13/2018
3.20.0 21,656 7/15/2017
3.20.0-beta01 234 5/31/2017
3.19.0 5,390 4/29/2017
3.18.0 1,793 4/9/2017
3.17.0 7,041 1/15/2017
3.16.0 744 1/3/2017
3.15.0 359 12/27/2016
3.14.0-beta03 262 11/20/2016
3.14.0-beta02 232 11/15/2016
3.14.0-beta01 281 10/30/2016
3.13.1 46,647 9/6/2016
3.13.0 581 8/18/2016
3.12.0 2,569 7/3/2016
3.11.1 2,376 4/24/2016
3.11.0 4,945 2/13/2016
3.10.0 3,456 12/30/2015
3.9.0 1,718 11/25/2015
3.8.0 17,690 9/26/2015
3.7.1 3,027 9/21/2015
3.7.0 7,629 5/9/2015
3.6.0 1,515 3/22/2015
3.5.0 2,158 1/10/2015
3.4.0 452 1/4/2015
3.3.0 1,452 11/26/2014
3.3.0-beta2 302 10/25/2014
3.3.0-beta1 326 9/28/2014
3.2.3 19,063 9/6/2014
3.2.2 345 9/5/2014
3.2.1 504 8/5/2014
3.2.0 318 8/5/2014
3.1.0 3,036 7/20/2014
3.0.2 736 6/26/2014
3.0.1 363 6/24/2014
3.0.0 843 6/21/2014
3.0.0-beta05 355 6/20/2014
3.0.0-beta04 326 6/15/2014
3.0.0-beta03 319 6/5/2014
3.0.0-beta02 332 5/29/2014
3.0.0-beta01 661 4/14/2014
3.0.0-alpha9 329 3/29/2014
3.0.0-alpha8 327 2/26/2014
3.0.0-alpha7 396 12/30/2013
3.0.0-alpha6 454 12/2/2013
3.0.0-alpha5 433 10/2/2013
3.0.0-alpha4 379 9/22/2013
3.0.0-alpha1 321 9/1/2013
2.6.0 6,375 7/26/2013
2.5.0 979 4/14/2013
2.4.0 660 2/3/2013
2.3.0 640 11/25/2012
2.2.1 660 8/29/2012
2.2.0 443 8/27/2012
2.1.2 1,535 10/9/2011
2.1.1 591 10/3/2011
2.1.0.19 560 10/3/2011