IdGen 3.0.7

dotnet add package IdGen --version 3.0.7                
NuGet\Install-Package IdGen -Version 3.0.7                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="IdGen" Version="3.0.7" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add IdGen --version 3.0.7                
#r "nuget: IdGen, 3.0.7"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install IdGen as a Cake Addin
#addin nuget:?package=IdGen&version=3.0.7

// Install IdGen as a Cake Tool
#tool nuget:?package=IdGen&version=3.0.7                

Logo IdGen

Build Status Nuget version

Twitter Snowflake-alike ID generator for .Net. Available as Nuget package

Why

In certain situations you need a low-latency, distributed, uncoordinated, (roughly) time ordered, compact and highly available Id generation system. This project was inspired by Twitter's Snowflake project which has been retired. Note that this project was inspired by Snowflake but is not an exact implementation. This library provides a basis for Id generation; it does not provide a service for handing out these Id's nor does it provide generator-id ('worker-id') coordination.

How it works

IdGen generates, like Snowflake, 64 bit Id's. The Sign Bit is unused since this can cause incorrect ordering on some systems that cannot use unsigned types and/or make it hard to get correct ordering. So, in effect, IdGen generates 63 bit Id's. An Id consists of 3 parts:

  • Timestamp
  • Generator-id
  • Sequence

An Id generated with a Default IdStructure is structured as follows:

Id structure

However, using the IdStructure class you can tune the structure of the created Id's to your own needs; you can use 45 bits for the timestamp, 2 bits for the generator-id and 16 bits for the sequence if you prefer. As long as all 3 parts (timestamp, generator and sequence) add up to 63 bits you're good to go!

The timestamp-part of the Id should speak for itself; by default this is incremented every millisecond and represents the number of milliseconds since a certain epoch. However, IdGen relies on an ITimeSource which uses a 'tick' that can be defined to be anything; be it a millisecond (default), a second or even a day or nanosecond (hardware support etc. permitting). By default IdGen uses 2015-01-01 0:00:00Z as epoch, but you can specify a custom epoch too.

The generator-id-part of the Id is the part that you 'configure'; it could correspond to a host, thread, datacenter or continent: it's up to you. However, the generator-id should be unique in the system: if you have several hosts or threads generating Id's, each host or thread should have it's own generator-id. This could be based on the hostname, a config-file value or even be retrieved from an coordinating service. Remember: a generator-id should be unique within the entire system to avoid collisions!

The sequence-part is simply a value that is incremented each time a new Id is generated within the same tick (again, by default, a millisecond but can be anything); it is reset every time the tick changes.

System Clock Dependency

We recommend you use NTP to keep your system clock accurate. IdGen protects from non-monotonic clocks, i.e. clocks that run backwards. The DefaultTimeSource relies on a 64bit monotonic, increasing only, system counter. However, we still recommend you use NTP to keep your system clock accurate; this will prevent duplicate Id's between system restarts for example.

The DefaultTimeSource relies on a Stopwatch for calculating the 'ticks' but you can implement your own time source by simply implementing the ITimeSource interface.

Getting started

Install the Nuget package and write the following code:

using IdGen;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        var generator = new IdGenerator(0);
        var id = generator.CreateId();
        // Example id: 862817670527975424
    }
}

Voila. You have created your first Id! Want to create 100 Id's? Instead of:

var id = generator.CreateId();

write:

var id = generator.Take(100);

This is because the IdGenerator() implements IEnumerable providing you with a never-ending stream of Id's (so you might want to be careful doing a .Select(...) or Count() on it!).

The above example creates a default IdGenerator with the GeneratorId (or: 'Worker Id') set to 0 and using a DefaultTimeSource. If you're using multiple generators (across machines or in separate threads or...) you'll want to make sure each generator is assigned it's own unique Id. One way of doing this is by simply storing a value in your configuration file for example, another way may involve a service handing out GeneratorId's to machines/threads. IdGen does not provide a solution for this since each project or setup may have different requirements or infrastructure to provide these generator-id's.

The below sample is a bit more complicated; we set a custom epoch, define our own id-structure for generated Id's and then display some information about the setup:

using IdGen;
using System;

class Program
{
    static void Main(string[] args)
    {
        // Let's say we take april 1st 2020 as our epoch
        var epoch = new DateTime(2020, 4, 1, 0, 0, 0, DateTimeKind.Utc);
            
        // Create an ID with 45 bits for timestamp, 2 for generator-id 
        // and 16 for sequence
        var structure = new IdStructure(45, 2, 16);
            
        // Prepare options
        var options = new IdGeneratorOptions(structure, new DefaultTimeSource(epoch));
            
        // Create an IdGenerator with it's generator-id set to 0, our custom epoch 
        // and id-structure
        var generator = new IdGenerator(0, options);

        // Let's ask the id-structure how many generators we could instantiate 
        // in this setup (2 bits)
        Console.WriteLine("Max. generators       : {0}", structure.MaxGenerators);

        // Let's ask the id-structure how many sequential Id's we could generate 
        // in a single ms in this setup (16 bits)
        Console.WriteLine("Id's/ms per generator : {0}", structure.MaxSequenceIds);

        // Let's calculate the number of Id's we could generate, per ms, should we use
        // the maximum number of generators
        Console.WriteLine("Id's/ms total         : {0}", structure.MaxGenerators * structure.MaxSequenceIds);


        // Let's ask the id-structure configuration for how long we could generate Id's before
        // we experience a 'wraparound' of the timestamp
        Console.WriteLine("Wraparound interval   : {0}", structure.WraparoundInterval(generator.Options.TimeSource));

        // And finally: let's ask the id-structure when this wraparound will happen
        // (we'll have to tell it the generator's epoch)
        Console.WriteLine("Wraparound date       : {0}", structure.WraparoundDate(generator.Options.TimeSource.Epoch, generator.Options.TimeSource).ToString("O"));
    }
}

Output:

Max. generators       : 4
Id's/ms per generator : 65536
Id's/ms total         : 262144
Wraparound interval   : 407226.12:41:28.8320000 (about 1114 years)
Wraparound date       : 3135-03-14T12:41:28.8320000+00:00

IdGen also provides an ITimeSouce interface; this can be handy for unittesting purposes or if you want to provide a time-source for the timestamp part of your Id's that is not based on the system time. For unittesting we use our own MockTimeSource.

<configuration>
  <configSections>
    <section name="idGenSection" type="IdGen.Configuration.IdGeneratorsSection, IdGen.Configuration" />
  </configSections>

  <idGenSection>
    <idGenerators>
      <idGenerator name="foo" id="123"  epoch="2016-01-02T12:34:56" timestampBits="39" generatorIdBits="11" sequenceBits="13" tickDuration="0:00:00.001" />
      <idGenerator name="bar" id="987"  epoch="2016-02-01 01:23:45" timestampBits="20" generatorIdBits="21" sequenceBits="22" />
      <idGenerator name="baz" id="2047" epoch="2016-02-29"          timestampBits="21" generatorIdBits="21" sequenceBits="21" sequenceOverflowStrategy="SpinWait" />
    </idGenerators>
  </idGenSection>

</configuration>

The attributes (name, id, epoch, timestampBits, generatorIdBits and sequenceBits) are required. The tickDuration is optional and defaults to the default tickduration from a DefaultTimeSource. The sequenceOverflowStrategy is optional too and defaults to Throw. Valid DateTime notations for the epoch are:

  • yyyy-MM-ddTHH:mm:ss
  • yyyy-MM-dd HH:mm:ss
  • yyyy-MM-dd

You can get the IdGenerator from the config using the following code:

var generator = AppConfigFactory.GetFromConfig("foo");

Dependency Injection

There is an IdGen.DependencyInjection NuGet package available that allows for easy integration with the commonly used Microsoft.Extensions.DependencyInjection.

Usage is straightforward:

services.AddIdGen(123); // Where 123 is the generator-id

Or, when you want to use non-default options:

services.AddIdGen(123, () => new IdGeneratorOptions(...));  // Where 123 is the generator-id

This registers both an IdGenerator as well as an IIdGenerator<long>, both pointing to the same singleton generator.

Upgrading from 2.x to 3.x

Upgrading from 2.x to 3.x should be pretty straightforward. The following things have changed:

  • Most of the constructor overloads for the IdGenerator have been replaced with a single constructor which accepts IdGeneratorOptions that contains the ITimeSource, IdStructure and SequenceOverflowStrategy
  • The MaskConfig class is now more appropriately named IdStructure since it describes the structure of the generated ID's.
  • The UseSpinWait property has moved to the IdGeneratorOptions and is now an enum of type SequenceOverflowStrategy instead of a boolean value. Note that this property has also been renamed in the config file (from useSpinWait to sequenceOverflowStrategy) and is no longer a boolean but requires one of the values from SequenceOverflowStrategy.
  • ID is now Id (only used as return value by the FromId() method)

The generated 2.x ID's are still compatible with 3.x ID's. This release is mostly better and more consistent naming of objects.

FAQ

Q: Help, I'm getting duplicate ID's or collisions?

A: Then you're probably not using IdGen as intended: It should be a singleton (per thread/process/host/...), and if you insist on having multiple instances around they should all have their own unique GeneratorId.

A: Also: Don't change the structure; once you've picked an IdStructure and go into production commit to it, stick with it. This means that careful planning is needed to ensure enough ID's can be generated by enough generators for long enough. Although changing the structure at a later stage isn't impossible, careful consideration is needed to ensure no collisions will occur.

Q: I'm experiencing weird results when these ID's are used in Javascript?

A: Remember that generated ID's are 64 (actually 63) bits wide. Javascript uses floats to store all numbers and the maximum integer value you can safely store is 53 bits. If you need to handle these ID's in Javascript, treat them as strings.

<hr>

Icon made by Freepik from www.flaticon.com is licensed by CC 3.0.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
.NET Core netcoreapp1.0 was computed.  netcoreapp1.1 was computed.  netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard1.1 is compatible.  netstandard1.2 was computed.  netstandard1.3 was computed.  netstandard1.4 was computed.  netstandard1.5 was computed.  netstandard1.6 was computed.  netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net45 was computed.  net451 was computed.  net452 was computed.  net46 was computed.  net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen30 was computed.  tizen40 was computed.  tizen60 was computed. 
Universal Windows Platform uap was computed.  uap10.0 was computed. 
Windows Phone wpa81 was computed. 
Windows Store netcore was computed.  netcore45 was computed.  netcore451 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (67)

Showing the top 5 NuGet packages that depend on IdGen:

Package Downloads
TIKSN-Framework

This is a .NET Framework enhancement framework. Main features are Versioning, Finance, Currency, Foreign Exchange, Money, Pricing strategy, Telemetry, Composite Weighted Progress, Repository and Unity of Wok pattern implementation with Entity Framework Core, Network Connectivity Service and Triggering, Settings, Windows Registry configuration source, Azure Storage Repository, MongoDB Repository, NoDB Repository, Lingual and Regional Localization, Serialization, Rest Requester, Rest Repository, Dependency Injection, Composition Root Setup base classes.

IdGen.DependencyInjection

Dependency injection support for IdGen

Dnc.Core

基于StandardLibrary的跨平台快速开发框架。

Kaneko.Server

Package Description

DataExplorer

Library featuring an opinionated, reusable data access layer offering abstractions and implementations for SQL storages (EF Core).

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
3.0.7 610,346 5/27/2024
3.0.6 480 5/26/2024
3.0.5 270,643 3/7/2024
3.0.4 226 3/7/2024
3.0.3 806,966 12/28/2022
3.0.2 280,185 9/14/2022
3.0.1 430,820 5/28/2022
3.0.0 1,823,215 7/6/2020
2.4.1 11,388 7/2/2020
2.4.0 54,125 5/6/2020
2.3.0 9,354 4/17/2020
2.2.0 74,290 3/4/2020
2.1.0 9,994 2/19/2020
2.0.3 488,277 7/31/2018
2.0.2 51,078 2/9/2018
2.0.1 7,850 11/23/2016
2.0.1-rc 1,587 10/10/2016
2.0.0-rc 1,695 7/21/2016
1.3.1 21,883 3/7/2016
1.3.0 1,890 3/7/2016
1.2.0 1,966 2/9/2016
1.1.0 2,142 6/29/2015
1.0.0 4,680 4/8/2015
1.0.0-beta 1,781 4/4/2015
1.0.0-alpha 1,623 4/3/2015