CouchbaseConnector.SemanticKernel 0.1.1

dotnet add package CouchbaseConnector.SemanticKernel --version 0.1.1                
NuGet\Install-Package CouchbaseConnector.SemanticKernel -Version 0.1.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="CouchbaseConnector.SemanticKernel" Version="0.1.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add CouchbaseConnector.SemanticKernel --version 0.1.1                
#r "nuget: CouchbaseConnector.SemanticKernel, 0.1.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install CouchbaseConnector.SemanticKernel as a Cake Addin
#addin nuget:?package=CouchbaseConnector.SemanticKernel&version=0.1.1

// Install CouchbaseConnector.SemanticKernel as a Cake Tool
#tool nuget:?package=CouchbaseConnector.SemanticKernel&version=0.1.1                

<img align="right" width="150" height="150" src="./Assets/logo.png" alt="Couchbase Logo"/>

Couchbase connector for Microsoft Semantic Kernel

Repository for CouchbaseConnector.SemanticKernel the official Couchbase Vector Store Connector for Microsoft Semantic Kernel.

Introduction

Semantic Kernel is an SDK that integrates Large Language Models (LLMs) like OpenAI, Azure OpenAI, and Hugging Face with conventional programming languages like C#, Python, and Java. Semantic Kernel achieves this by allowing you to define plugins that can be chained together in just a few lines of code.

Semantic Kernel and .NET provides an abstraction for interacting with Vector Stores and a list of out-of-the-box connectors that implement these abstractions. Features include creating, listing and deleting collections of records, and uploading, retrieving and deleting records. The abstraction makes it easy to experiment with a free or locally hosted Vector Store and then switch to a service when needing to scale up.

This repository contains the official Couchbase Vector Store Connector implementation for Semantic Kernel.

Overview

The Couchbase Vector Store connector can be used to access and manage data in Couchbase. The connector has the following characteristics.

Feature Area Support
Collection maps to Couchbase collection
Supported key property types string
Supported data property types All types that are supported by System.Text.Json (either built-in or by using a custom converter)
Supported vector property types <ul><li>float[]</li><li>IEnumerable<float></li></ul>
Supported index types N/A
Supported distance functions <ul><li>CosineSimilarity</li><li>DotProductSimilarity</li><li>EuclideanDistance</li></ul>
Supports multiple vectors in a record Yes
IsFilterable supported? Yes
IsFullTextSearchable supported? Yes
StoragePropertyName supported? No, use JsonSerializerOptions and JsonPropertyNameAttribute instead. See here for more info.

Getting Started

Setting up Couchbase

Setup a Couchbase Cluster (Self-Managed or Capella) running version 7.6+ with the Search Service enabled

For vector search, ensure you have a Vector Search Index configured. For more information on creating a vector search index, please follow the instructions.

Using the Couchbase Vector Store Connector

Add the Couchbase Vector Store connector NuGet package to your project.

dotnet add package CouchbaseConnector.SemanticKernel --prerelease

You can add the vector store to the dependency injection container available on the KernelBuilder or to the IServiceCollection dependency injection container using extension methods provided by Semantic Kernel.

using Microsoft.SemanticKernel;

// Using Kernel Builder.
var kernelBuilder = Kernel.CreateBuilder()
    .AddCouchbaseVectorStore(
        connectionString: "couchbases://your-cluster-address",
        username: "username",
        password: "password",
        bucketName: "bucket-name",
        scopeName: "scope-name");
using Microsoft.Extensions.DependencyInjection;

// Using IServiceCollection with ASP.NET Core.
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddCouchbaseVectorStore(
    connectionString: "couchbases://your-cluster-address",
    username: "username",
    password: "password",
    bucketName: "bucket-name",
    scopeName: "scope-name");

Extension methods that take no parameters are also provided. These require an instance of the IScope class to be separately registered with the dependency injection container.

using Microsoft.Extensions.DependencyInjection;
using Microsoft.SemanticKernel;
using Couchbase;
using Couchbase.KeyValue;

// Using Kernel Builder.
var kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.Services.AddSingleton<ICluster>(sp =>
{
    var clusterOptions = new ClusterOptions
    {
        ConnectionString = "couchbases://your-cluster-address",
        UserName = "username",
        Password = "password"
    };

    return Cluster.ConnectAsync(clusterOptions).GetAwaiter().GetResult();
});

kernelBuilder.Services.AddSingleton<IScope>(sp =>
{
    var cluster = sp.GetRequiredService<ICluster>();
    var bucket = cluster.BucketAsync("bucket-name").GetAwaiter().GetResult();
    return bucket.Scope("scope-name");
});

// Add Couchbase Vector Store
kernelBuilder.Services.AddCouchbaseVectorStore();
using Microsoft.Extensions.DependencyInjection;
using Microsoft.SemanticKernel;
using Couchbase.KeyValue;
using Couchbase;

// Using IServiceCollection with ASP.NET Core.
var builder = WebApplication.CreateBuilder(args);

builder.Services.AddSingleton<ICluster>(sp =>
{
    var clusterOptions = new ClusterOptions
    {
        ConnectionString = "couchbases://your-cluster-address",
        UserName = "username",
        Password = "password"
    };

    return Cluster.ConnectAsync(clusterOptions).GetAwaiter().GetResult();
});

builder.Services.AddSingleton<IScope>(sp =>
{
    var cluster = sp.GetRequiredService<ICluster>();
    var bucket = cluster.BucketAsync("bucket-name").GetAwaiter().GetResult();
    return bucket.Scope("scope-name");
});

// Add Couchbase Vector Store
builder.Services.AddCouchbaseVectorStore();

You can construct a Couchbase Vector Store instance directly.

using Couchbase;
using Couchbase.KeyValue;
using Couchbase.SemanticKernel;

var clusterOptions = new ClusterOptions
{
    ConnectionString = "couchbases://your-cluster-address",
    UserName = "username",
    Password = "password"
};

var cluster = await Cluster.ConnectAsync(clusterOptions);

var bucket = await cluster.BucketAsync("bucket-name");
var scope = bucket.Scope("scope-name");

var vectorStore = new CouchbaseFtsVectorStore(scope);

It is possible to construct a direct reference to a named collection.

using Couchbase;
using Couchbase.KeyValue;
using Couchbase.SemanticKernel;

var clusterOptions = new ClusterOptions
{
    ConnectionString = "couchbases://your-cluster-address",
    UserName = "username",
    Password = "password"
};

var cluster = await Cluster.ConnectAsync(clusterOptions);
var bucket = await cluster.BucketAsync("bucket-name");
var scope = bucket.Scope("scope-name");

var collection = new CouchbaseVectorStoreRecordCollection<Hotel>(
    scope,
    "hotelCollection");

Data mapping

The Couchbase connector uses System.Text.Json.JsonSerializer for data mapping. Properties in the data model are serialized into a JSON object and mapped to Couchbase storage.

Use the JsonPropertyName attribute to map a property to a different name in Couchbase storage. Alternatively, you can configure JsonSerializerOptions for advanced customization.

using Couchbase.SemanticKernel;
using Couchbase.KeyValue;
using System.Text.Json;

var jsonSerializerOptions = new JsonSerializerOptions
{
    PropertyNamingPolicy = JsonNamingPolicy.CamelCase
};

var options = new CouchbaseVectorStoreRecordCollectionOptions<Hotel>
{
    JsonSerializerOptions = jsonSerializerOptions
};

var collection = new CouchbaseVectorStoreRecordCollection<Hotel>(scope, "hotels", options);

Using the above custom JsonSerializerOptions which is using CamelCase, the following data model will be mapped to the below json.

using System.Text.Json.Serialization;
using Microsoft.Extensions.VectorData;

public class Hotel
{
    [JsonPropertyName("hotelId")]
    [VectorStoreRecordKey]
    public string HotelId { get; set; }

    [JsonPropertyName("hotelName")]
    [VectorStoreRecordData(IsFilterable = true)]
    public string HotelName { get; set; }

    [JsonPropertyName("description")]
    [VectorStoreRecordData(IsFullTextSearchable = true)]
    public string Description { get; set; }

    [JsonPropertyName("descriptionEmbedding")]
    [VectorStoreRecordVector(Dimensions: 4, DistanceFunction.DotProductSimilarity)]
    public float[] DescriptionEmbedding { get; set; }
}
{
  "hotelId": "h1",
  "hotelName": "Hotel Happy",
  "description": "A place where everyone can be happy",
  "description_embedding": [0.9, 0.1, 0.1, 0.1]
}

License

Couchbase connector for Microsoft Semantic Kernel is licensed under the Apache 2.0 license.

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.1.1 8 1/14/2025
0.1.0 37 1/10/2025